Skip to main content
Log in

Recent Results for the Arabian Plate Motion Using Satellite Laser Ranging Observations of Riyadh SLR Station to LAGEOS-1 and LAGEOS-2 Satellites

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Saudi Arabia Laser Ranging Observatory (SALRO-7832) has been established in 1995 and is situated in the Arabian tectonic plate which is countering a north east motion. Laser ranging observations of about 20 global SLR stations to LAGEOS-1 and LAGEOS-2 satellites collected for 14 years (1996–2009) have been used to determine Riyadh SLR station positions and velocity. The NASA Goddard’s GEODYN-II orbital software has been used to perform orbit determination of these two satellites. The computations were performed on the basis of 114 monthly arcs of observations with the total number of normal points of 33,708 and 40,168 for LAGEOS-1 and LAGEOS-2, respectively. The geocentric coordinates were computed and then transformed to the topocentric North, East and vertical components in reference to the ITRF2008 terrestrial reference frame. The range biases of the Riyadh SLR station in the whole period of study were 2.5 and 2.0 mm with long-term bias stability 7.5 and 7.2 mm for LAGEOS-1 and LAGEOS-2 satellites, respectively. The orbital RMS of fit for all stations was equal to 16.4 mm for the whole period. The stability of the time series positions in form of RMS of the X, Y, Z component residuals w.r.t. a linear trend for Riyadh SLR station were 10.1, 9.3, and 9.0 mm, respectively. 3D deviation from ITRF2008 position was equal to 4.5 mm. The velocities were 29.1 ± 0.2, 31.6 ± 0.2, and 1.9 ± 0.3 mm/year in the North, East and vertical directions, respectively, with a horizontal and 3D velocity 42.9 ± 0.2 mm/year and azimuth 47.4 ± 0.8 arc degrees. The central part of the Arabian tectonic plate motion was precisely determined from the Riyadh SLR data and the results showed a good agreement with ITRF2008 velocity, geological model NNR NUVEL1A and with recent GPS estimates. This paper includes a full discussion of the results of Riyadh SLR station collected over 14 years of activity and gives the absolute movement of the central part of the Arabian tectonic plate (velocity and azimuth).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M.: The international laser ranging service. Adv. Space Res. 30(2), 135–143 (2002). doi:10.1016/s0273-1177(02)00277-6

    Google Scholar 

  2. Reches Z., Schubert G.: Models of post-Miocene deformation of the Arabian plate. Tectonics 6, 707–725 (1987)

    Article  Google Scholar 

  3. Vaslet D., Al-Muallem M.S., Maddah S., Brose J., Fourniguet J., Breton J.P., Nindre Y.M.: Ministry of petroleum and mineral resources. Bull. Jeddah. 24, 54 (1991)

    Google Scholar 

  4. ArRajhi, A.; McClusky, S.; Reilinger, R.; Daoud, M.; Alchalbi, A.; Ergintav, S.; Gomez, F.; Sholan, J.; BouRabee, F.; Ogubazghi, G.; Haileab, B.; Fisseha, S.; Asfaw, L.; Mahmoud, S.; Rayan, A.; Bendik, R.; Kogan, L.: Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. Tectonic. 29, TC3011 (2010). doi:10.1029/2009TC002482

  5. Alkadhi A., Hancock P.L.: Structure of the Durma-Nisah segment of the central Arabian graben system. Mineral Resour. Bull. Jeddah. 16, 1–35 (1980)

    Google Scholar 

  6. McClusky, S.; Balassanian, S.; Baraka, A.; Demir, C.; Ergintac, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; Kastens, K.; Kekelidze, G.; King, R.; Kotzev, V.; Lenk, S.; Mahmoud, S.; Mishin, A.; Nadariya, M.; Ouzounis, A.; Paradissi, A.; Peter, Y.; Prilepin, M.; Reilinger, R.; Salni, I.; Seeger, H.; Tealeb, A.; Toksoz, M.N.; Veis, G.: Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediteranean and Caucasus. J. Geophys. Res. 105, B3, 5695-5719/1999JB900351 (2000)

    Google Scholar 

  7. Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; Nadariya, M.; Hahobia, G.; Mahmoud, S.; Sakr, K.; ArRajehi, A.; Paradissis, D.; Al-Aydrus, A.; Prilepin, M.; Guseva; T.; Evren; E.; Dmitrosta, A.; Filikov, S.V.; Gomez, F.; Al-Ghazzi, R.; Karam, G.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res.111, B05411 (2006). doi:10.1029/2005JB004051

  8. Vigny, C.; Huchon, P.; Ruegg, J.-C.; Khanbari, K.; Asfaw, L.M.: Confirmation of Arabian plate slow motion by new GPS data in Yemen. J. Geophys. Res. 111, B02402 (2006). doi:10.1029/2004JB003229

  9. McClusky S., Reilinger R., Mahmoud S., Ben Sari D., Tealeb A.: GPS onstraintas on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 155, 126–138 (2003)

    Article  Google Scholar 

  10. Chu D., Gordon R.G.: Current plate motions across the Red Sea. Geophys. J. Int. 135, 313–328 (1998)

    Article  Google Scholar 

  11. Minster J.B., Jordan T.H.: Present-day plate motions. J. Geophys. Res. 83, 5331–5354 (1978)

    Article  Google Scholar 

  12. DeMets C., Gordon R., Argus D.: Current plate motions. Geophys. J. Int. 101, 425–478 (1990)

    Article  Google Scholar 

  13. Sengoku A.: A plate motion study using Ajisai SLR data. Earth Planets Space 50, 611–627 (1998)

    Google Scholar 

  14. Schillak, S.: Determination of the Borowiec SLR coordinates. In: Bianco, G.; Luceri, V. (eds.) Proceedings of 12th International Workshop on Laser Ranging, Matera, 13-17.11.2000, ASI Matera, Italy (2000)

  15. Lejba P., Schillak S.: Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv. Space Res. 47, 654–662 (2011)

    Article  Google Scholar 

  16. Saad N.A.: Decay of satellite orbits due to the drag of rotating oblate atmosphere with scale height dependent on altitude. Arab J. Sci. Eng. 36, 303–309 (2011)

    Article  Google Scholar 

  17. Pavlis, D.E.; Luo, S.; Dahiroc, P.; et al.: GEODYN II System Description. Hughes STX Contractor Report, Greenbelt, Maryland, July 1998

  18. Soycan M.: A quality evaluation of precise point positioning within the Bernese GPS software version 5.0. Arab J. Sci. Eng. 37, 147–162 (2012)

    Google Scholar 

  19. Altamimi, Z.; Collilieux, X.; Métivier, L.: ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85, 457–473 (2011). doi:10.1007/s00190-011-0444-4

    Google Scholar 

  20. Torrence, M.H.; Klosko, S.M.; Christodoulidis, D.C.: The construction and testing of normal point at Goddard Space Flight Center. In: Gaignebet, J. (ed.) Proceedings of 5th International Workshop on Laser Ranging Instrumentation, Herstmonceux, 1984.09.10-14, vol. 2, pp. 506–516 (1984)

  21. Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K.: An Earth Gravitational Model to Degree 2160:EGM2008. Presented at the 2008 General Assembly of the European Geoscience Union, Vienna, Austria, April 13–18, 2008

  22. McCarthy, D.D.; Petit, G. (eds.): IERS Conventions (2003). IERS Technical Note No. 32, International Earth Rotation and Reference Systems Service, Bundesamt fur Kartographie und Geodasie, Frankfurt am Main (2004)

  23. Ray, R.D.: A global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2. NASA/TMm1999-200478, (1999)

  24. Standish, E.M.; Newhall, X.X.; Williams, J.G.; et al.: JPL Planetary and Lunar Ephemerides, DE403/LE403. JPL IOM 314.10-127 (1995)

    Google Scholar 

  25. Petit, G.; Luzum, B. (eds.): IERS Conventions (2010). IERS Technical Note No. 36. International Earth Rotation and Reference Systems Service, Bundesamt fur Kartographie und Geodasie, Frankfurt am Main (2010)

  26. Mendes, V.B.; Prates, G.; Pavlis, E.C.; et al.: Improved mapping functions for atmospheric refraction in SLR. Geophys. Res. Lett. 29 (10), 53-1–53-4 (2002). doi:10.1029/2001GL014394

  27. Mendes, V.B.; Pavlis, E.C.: High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 31, L14602, (2004). doi:10.1029/2004GL020308

  28. Borkowski, K.M.: Accurate algorithms to transform geocentric to geographic coordinates. Bull. Geod. 63, 50–56 (1989)

    Google Scholar 

  29. UNAVCO, Plate Motion Calculator: http://sps.unavco.org/crustal_motion/dxdt/model/ (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Alothman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alothman, A.O., Schillak, S. Recent Results for the Arabian Plate Motion Using Satellite Laser Ranging Observations of Riyadh SLR Station to LAGEOS-1 and LAGEOS-2 Satellites. Arab J Sci Eng 39, 217–226 (2014). https://doi.org/10.1007/s13369-013-0823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0823-7

Keywords

Navigation