Skip to main content
Log in

Experimental Investigation of the Vortex Generator Effects on a Gas Liquid Finned Tube Heat Exchanger Using Irreversibility Analysis

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present work, the effect of wedge-shaped tetrahedral vortex generator (VG) on a gas liquid finned tube heat exchanger is experimentally investigated using irreversibility analysis. In this experiment, a wind tunnel system is used for forcing ambient air with mass flow rates of 0.047–0.072 kg/s across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes at steady-state condition with inlet temperature range of 45–73 C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using mounted VGs lowered the air side irreversibility to heat transfer ratio (ASIHR) of heat exchanger. It is mainly because; the air side irreversibility decreases with heat transfer enhancement associated with lower temperature differences between air and water sides. To reveal the effects of these VGs on the heat exchanger, the VG performance based on air side irreversibility is quantified by the improved air side irreversibility to heat transfer ratio (IASIHR). The results indicate that the IASIHR is more than 1.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASIHR:

Irreversibility to heat transfer ratio of air side

c :

Specific heat of water (J/kg K)

c p :

Specific heat of air at constant pressure (J/kg K)

\({\dot{E}}\) :

Exergy transfer rate (W)

h :

Enthalpy (J/kg)

(h 2h 3):

Air side pressure drop (mm w.g.)

IASIHR:

Improved irreversibility to heat transfer ratio of air side

\({\dot{I}}\) :

Irreversibility rate (W)

\({\dot{m}}\) :

Mass flow rate (kg/s)

\({\dot{Q}}\) :

Heat transfer rate (W)

R :

Gas constant (J/kg K)

s :

Entropy (J/kg K)

T :

Temperature (K)

VG:

Vortex generator

\({\Delta \dot{E}}\) :

Change of exergy transfer rate (W)

ΔP :

Pressure drop (Pa)

ΔT :

Temperature difference (K)

Δ φ :

Change of specific flow exergy (J/kg)

\({\varepsilon _{\rm exergy}}\) :

Exergy transfer effectiveness (%)

\({\varepsilon _{\rm HE}}\) :

Heat exchanger effectiveness (%)

ν :

Specific volume of water (m3/kg)

φ :

Specific flow exergy (J/kg)

a:

Air

AS:

Air side

HE:

Heat exchanger

i:

Inlet

max:

Maximum possible

o:

Outlet

w:

Water

with VG:

Heat exchanger with mounted VGs on its fin surfaces

without VG:

Flat finned tube heat exchanger

0:

The surrounding state

References

  1. Kakaç, S.; Liu, H.: Heat Exchangers: Selection, Rating, and Thermal Design. CRC Press, New York (2002)

  2. Junqi, D.; Jiangping, C.; Zhijiu, C.; Yimin, Z.; Wenfeng, Z.: Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers. Appl. Therm. Eng. 27, 2066–2073 (2007)

    Google Scholar 

  3. Tao, Y.B.; He, Y.L.; Huang, J.; Wu, Z.G.; Tao, W.Q.: Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers. Int. J. Therm. Sci. 46, 768–778 (2007)

    Google Scholar 

  4. Tao Y.B., He Y.L., Huang J., Wu Z.G., Tao W.Q.: Three-dimensional numerical study of wavy fin-and-tube heat exchangers and field synergy principle analysis. Int. J. Heat Mass Transf. 50, 1163–1175 (2007)

    Article  MATH  Google Scholar 

  5. Li, J.; Wang, S.; Chen, J.; Lei, Y.G.: Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators. Int. J. Heat Mass Transf. 54, 1743–1751 (2011)

    Google Scholar 

  6. Peng, H.; Ling, X.: Analysis of heat transfer and flow characteristics over serrated fins with different flow directions. Energy Convers. Manag. 52, 826–835 (2011)

    Google Scholar 

  7. Song, W.M.; Meng, J.A.; Li, Z.X.: Numerical study of air-side performance of a finned flat tube heat exchanger with crossed discrete double inclined ribs. Appl. Therm. Eng. 30, 1797–1804 (2010)

    Google Scholar 

  8. Nuntaphan, A.; Vithayasai, S.; Kiatsiriroat, T.; Wang, C.C.: Effect of inclination angle on free convection thermal performance of louver finned heat exchanger. Int. J. Heat Mass Transf. 50, 361–366 (2007)

    Google Scholar 

  9. Dong, J.; Chen, J.; Chen, Z.; Zhang, W.; Zhou, Y.: Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers. Energy Convers. Manag. 48, 1506–1515 (2007)

    Google Scholar 

  10. T’Joen, C.; Jacobi, A.; De Paepe, M.: Flow visualization in inclined louvered fins. Exp. Therm. Fluid Sci. 33, 664–674 (2009)

    Google Scholar 

  11. Chen, Y.; Fiebig, M.; Mitra, N.Y.: Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line. Int. J. Heat Mass Transf. 41, 4151–4166 (1998)

    Google Scholar 

  12. Chen, Y.; Fiebig, M.; Mitra, N.Y.: Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators. Int. J. Heat Mass Transf. 43, 417–435 (2000)

    Google Scholar 

  13. Tian, L.; He, Y.; Tao, Y.; Tao, W.: A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements. Int. J. Therm. Sci. 48, 1765–1776 (2009)

    Google Scholar 

  14. Zhang, Y.H.; Wu, X.; Wang, L.B.; Song, K.W.; Dong, Y.X.; Liu, S.: Comparison of heat transfer performance of tube bank fin with mounted vortex generators to tube bank fin with punched vortex generators. Exp. Therm. Fluid Sci. 33, 58–66 (2008)

    Google Scholar 

  15. Lei, Y.G.; He, Y.L.; Tian, L.T.; Chu, P.; Tao, W.Q.: Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators. Chem. Eng. Sci. 65, 1551–1562 (2010)

    Google Scholar 

  16. Zeng, M.; Tang, L.H.; Lin, M.; Wang, Q.W.: Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl. Therm. Eng. 30, 1775–1783 (2010)

    Google Scholar 

  17. Sanders, P.A.; Thole, K.A.: Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers. Int. J. Heat Mass Transf. 49, 4058–4069 (2006)

    Google Scholar 

  18. Wang, C.C.; Lo, J.; Lin, Y.T.; Liu, M.S.: Flow visualization of wave-type vortex generators having inline fin-tube arrangement. Int. J. Heat Mass Transf. 45, 1933–1944 (2002)

    Google Scholar 

  19. Leu, J.S.; Wu, Y.H.; Yang, J.J.: Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. Int. J. Heat Mass Transf. 47, 4327– 4338 (2004)

    Google Scholar 

  20. Tang, L.H.; Zeng, M.; Wang, Q.W.: Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns. Exp. Therm. Fluid Sci. 33, 818–827 (2009)

    Google Scholar 

  21. Henze M., von Wolfersdorf J.: Influence of approach flow conditions on heat transfer behind vortex generators. Int. J. Heat Mass Transf. 54, 279–287 (2011)

    Article  MATH  Google Scholar 

  22. Wu S.Y., Yuan X.F., Li Y.R., Xiao L.: Exergy transfer effectiveness on heat exchanger for finite pressure drop. Energy 32, 2110–2120 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Khazaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazikhani, M., Khazaee, I., Monazzam, S.M.S. et al. Experimental Investigation of the Vortex Generator Effects on a Gas Liquid Finned Tube Heat Exchanger Using Irreversibility Analysis. Arab J Sci Eng 39, 2107–2116 (2014). https://doi.org/10.1007/s13369-013-0750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0750-7

Keywords

Navigation