Skip to main content
Log in

Nano-Engineering of Concrete

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper summarizes recent developments in the field of nanoindentation analysis of highly heterogeneous composites. The fundamental idea of the proposed approach is that it is possible to assess nanostructure from the implementation of micromechanics-based scaling relations for a large array of nanoindentation tests on heterogeneous materials. We illustrate this approach through the application to calcium-silicate-hydrate (C-S-H), the binding phase of all cement-based materials. For this important class of materials, we show that C-S-H exists in at least three structurally distinct but compositionally similar forms: low density, high density and ultra-high density. These three forms differ merely in the packing density of 5-nm sized particles. The proposed approach also gives access to the solid particle properties of C-S-H, which can now be compared with results from atomistic simulations. By way of conclusion, we show how this approach provides a new way of analyzing complex hydrated nanocomposites, in addition to classical microscopy techniques and chemical analysis. This approach will turn out invaluable in our quest of adding the necessary “green” value to a commodity, concrete, by nano-engineering higher strength and toughness from first principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACI Committee 318: Building code requirements for reinforced concrete (ACI 318-95). American Concrete Institute, Farmington Hills (1995)

  2. Bobko C., Ulm F.-J.: The nano-mechanical morphology of shale. Mech. Mater 40(4–5), 318–337 (2008)

    Article  Google Scholar 

  3. Cariou S., Ulm F.J., Dormieux L.: Hardness-packing density scaling relations for cohesive-frictional porous materials. J. Mech. Phys. Solids 56, 924–952 (2008)

    Article  MATH  Google Scholar 

  4. Constantinides G., Ulm F.-J.: The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Concr. Res 34(1), 67–80 (2004)

    Article  Google Scholar 

  5. Constantinides G., Ulm F.-J.: The nanogranular nature of C-S-H. J. Mech. Phys. Solids 55(1), 64–90 (2007)

    Article  MATH  Google Scholar 

  6. Constantinides G., Ulm F.-J., Van Vliet K.: On the use of nanoindentation for cementitious materials. Mater. Struct 36(3), 191–196 (2003)

    Article  Google Scholar 

  7. Dalgleish B.J., Ibe K.: “Thin foil studies of hydrated cements. ” Cement and Concrete Research 11, 729–739 (1981)

    Article  Google Scholar 

  8. DeJong M.J., Ulm F.-J.: The nanogranular behavior of C-S-H at elevated temperatures (up to 700°C). Cem. Concr. Res 37(1), 1–12 (2007)

    Article  Google Scholar 

  9. Donev A., Cisse I., Sachs D., Variano E.A., Stillinger F.H., Connely R., Torquato S., Chaikin P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004)

    Article  Google Scholar 

  10. Dormieux L., Kondo D., Ulm F.-J.: Microporomechanics. Wiley, UK (2006)

    Book  MATH  Google Scholar 

  11. Gathier, B.; Ulm, F.-J.: Multiscale strength homogenization - application to shale nanoindentation. MIT-CEE Res. Rep. R08-01, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge (2008)

  12. Groves G.W.: TEM studies of cement hydration. Mat. Res. Soc. Symposium Proc 85, 3–12 (1987)

    Article  Google Scholar 

  13. Helmuth, R.A.; Turk, D.H.;: Elastic moduli of hardened portland cement and tricalcium silicate pastes: effect of porosity. In: Symposium on structure of Portland cement paste and concrete, pp. 135–144 (1966)

  14. Jaeger H.M., Nagel S.R.: Physics of granular state. Science 255(5051), 1523–1531 (1992)

    Article  Google Scholar 

  15. Jennings H.M.: A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res 30, 101–116 (2000)

    Article  Google Scholar 

  16. Jennings H.M.: Colloid model of C-S-H and implications to the problem of creep and shrinkage. Mat. Struct 37((265), 59–70 (2004)

    Article  Google Scholar 

  17. Jennings H.M.: Refinements to colloid model of C-S-H in cement: CM-II. Cem Concr Res 38((3), 275–289 (2008)

    Article  MathSciNet  Google Scholar 

  18. Jennings H.M., Thomas J.J., Gevrenov J.S., Constantinides G., Ulm F-J.: A multi-technique investigation of the nanoporosity of cement paste. Cem. Concr. Res 37((3), 329–336 (2007)

    Article  Google Scholar 

  19. Mondal P., Shah S.P., Marks L.: A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cem. Concr. Res 37(10), 1440–1444 (2007)

    Article  Google Scholar 

  20. Oliver W.C., Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  21. Pellenq R.J.M. et al.: A realistic molecular model of cement hydrates. PNAS 106(38), 16102–16107 (2009)

    Article  Google Scholar 

  22. Powers, T.C.; Brownyard, T.L.: Studies of the physical properties of hardened Portland cement paste. Bull. 22, Res. Lab. of Portland Cement Association, Skokie, IL, U.S. J. Am. Concr. Inst. (Proc.), 43 (1947) 101–132, 249–336, 469–505, 549–602, 669–712, 845–880, 933–992 (reprint) (1947)

  23. Richardson I.G.: The nature of C-S-H in hardened cements. Cem. Concr. Res 29, 1131–1147 (1999)

    Article  Google Scholar 

  24. Richardson I.G.: “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res 34, 1733–1777 (2004)

    Article  Google Scholar 

  25. Richardson I.G., Rodger S.A., Groves G.W.: The porosity and pore structure of hydrated cement pastes as revealed by electron microscopy techniques. Mat. Res. Soc. Symp. Proc 137, 313–318 (1989)

    Article  Google Scholar 

  26. Sanahuja J., Dormieux L., Chanvillard G.: Modelling elasticity of a hydrating cement paste. Cem. Concr. Res 37, 1427–1439 (2007)

    Article  Google Scholar 

  27. Scrivener K.L., Patell H.H., Pratt P.L., Parrott L.J.: Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis. Mat. Res. Soc. Symp. Proc 85, 67–76 (1985)

    Article  Google Scholar 

  28. Sloane N.J.A.: Kepler’s conjecture confirmed. Nature 395, 435–436 (1998)

    Article  Google Scholar 

  29. Taplin J.H.: A method for following the hydration reaction in portland cement paste. Aust. J. Appl. Sci 10, 329–345 (1959)

    Google Scholar 

  30. Taylor H.F.W.: Studies on the chemistry and microstructure of cement pastes. Proc. Brit. Ceram. Soc 35, 65–82 (1984a)

    Google Scholar 

  31. Taylor H.F.W.: Newbury DE, An electron microprobe study of a mature cement paste. Cem. Concr. Res 14, 565–573 (1984b)

    Article  Google Scholar 

  32. Tennis P.D., Jennings H.M.: A model for two types of calcium silicate hydrate in the microstructure of portland cement pastes. Cem. Concr. Res 30, 855–863 (2000)

    Article  Google Scholar 

  33. Thomas, J.J.; Jennings, H.M.; Allen, A.J.: The surface area of cement paste as measured by neutron scattering: evidence for two C-S-H morphologies. Cem. Concr. Res. 28(6), 897–905

  34. Ulm, F.J.; Jennings, H.M.: Does C-S-H particle shape matter? A discussion of the paper ‘Modelling elasticity of a hydrating cement paste’, by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427–1439. Cem. Concr. Res. 38(8–9), 1126–1129 (2008)

  35. Ulm F-J., Constantinides G., Heukamp F.H.: Is concrete a poromechanics material? A multiscale investigation of poroelastic properties. Mater. Struct 37((265), 43–58 (2004)

    Article  Google Scholar 

  36. Ulm F.J., Vandamme M., Bobko C., Ortega J.A., Tai K., Ortiz C.: Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J. Am. Ceram. Soc 90(9), 2677–2692 (2007)

    Article  Google Scholar 

  37. Vandamme M., Ulm F-J., Fonollosa P.: Nanogranular packing of C-S-H at substochiometric conditions. Cem. Concr. Res 40, 14–26 (2010)

    Article  Google Scholar 

  38. Verbeck, G.J.; Helmuth, R.A.: Structures and physical properties of cement paste. In: 5th Internaional congress cement chemistry, Tokyo, pp. 1–44 (1969)

  39. Viehland D., Li J.F., Yuan L.J., Xu Z.K.: Mesostructure of calcium silicate hydrate (C-S-H) gels in portland-cement paste-a short range ordering nanocrystallinity and local compositional order. J. Am. Ceram. Soc 79(7), 1731–1744 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Josef Ulm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulm, FJ. Nano-Engineering of Concrete. Arab J Sci Eng 37, 481–488 (2012). https://doi.org/10.1007/s13369-012-0181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0181-x

Keywords

Navigation