Skip to main content
Log in

Understanding nanorheology and surface forces of confined thin films

  • Themed Reviews
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Understanding the nanorheology and associated intermolecular/surface forces of fluids in confined geometries or porous media is of both fundamental and practical importance, providing significant insights into various applications such as lubrication and micro/nanoelectromechanical systems. In this work, we briefly reviewed the fundamentals of nanoreheolgy, advances in experimental techniques and theoretical simulation methods, as well as important progress in the nanorheology of confined thin films. The advent of advanced experimental techniques such as surface forces apparatus (SFA), X-ray surface forces apparatus (XSFA) and atomic force microscope (AFM) and computational methods such as molecular dynamics simulations provides powerful tools to study a wide range of rheological phenomena at molecular level and nano scale. One of the most challenging issues unresolved is to elucidate the relationship between the rheological properties and structural evolution of the confined fluid films and particles suspensions. Some of the emerging research areas in the nanorheology field include, but are not limited to, the development of more advanced characterization techniques, design of multifunctional rheological fluids, bio-related nanorheology, and polymer brushes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M.P. and D.J. Tildesley, 1989, Computer Simulations of Liquids, Oxford University Press, USA.

    Google Scholar 

  • Aoyagi, T., J. Takimoto and M. Doi, 2001, Molecular dynamics study of polymer melt confined between wsalls, J. Chem. Phys. 115(1), 552–559.

    Article  Google Scholar 

  • Atkin, R. and G.G. Warr, 2007, Structure in confined room-temperature ionic liquids, J. Phys. Chem. C 111(13), 5162–5168.

    Article  Google Scholar 

  • Benz, M., N.H. Chen and J.N. Israelachvili, 2004, Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus, J. Biomed. Mater. Res., Part A 71A(1), 6–15.

    Article  Google Scholar 

  • Bhushan, B., J.N. Israelachvili and U. Landman, 1995, Nanotribology-friction, wear and lubrication at the atomic-scale, Nature 374(6523), 607–616.

    Article  Google Scholar 

  • Bhushan, B., 2005, Nanotribology and nanomechanics, Wear 259, 1507–1531.

    Article  Google Scholar 

  • Bitsanis, I., J.J. Magda, M. Tirrell and H.T. Davis, 1987, Molecular-dynamics of flow in micropores, J. Chem. Phys. 87(3), 1733–1750.

    Article  Google Scholar 

  • Chan, D.Y.C. and R.G. Horn, 1985, The drainage of thin liquidfilms between solid-surfaces, J. Chem. Phys. 83(10), 5311–5324.

    Article  Google Scholar 

  • Chan, D.Y.C., E. Klaseboer and R. Manica, 2011, Film drainage and coalescence between deformable drops and bubbles, Soft Matter 7(6), 2235–2264.

    Article  Google Scholar 

  • Christenson, H.K., 1983, Experimental measurements of solvation forces in non-polar liquids, J. Chem. Phys. 78(11), 6906–6913.

    Article  Google Scholar 

  • Chun, M.-S., 2012, Conformational transition of polyelectrolyte chains extending over the de Gennes regime in slitlike nanochannels, Korea-Aust. Rheol. J. 24(3), 249–253.

    Article  Google Scholar 

  • Chun, M.-S., C. Kim and D.E. Lee, 2009, Conformation and translational diffusion of a xanthan polyelectrolyte chain: Brownian dynamics simulation and single molecule tracking, Phys. Rev. E 79(5), 051919, 1–10.

    Article  Google Scholar 

  • Cohen, I., T.G. Mason and D.A. Weitz, 2004, Shear-induced configurations of confined colloidal suspensions, Phys. Rev. Lett. 93(4), 046001, 1–4.

    Article  Google Scholar 

  • Contreras-Naranjo, J.C. and V.M. Ugaz, 2013, A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces, Nat. Commun. 4, 1–9.

    Article  Google Scholar 

  • Dagastine, R.R., R. Manica, S.L. Carnie, D.Y.C. Chan, G.W. Stevens and F. Grieser, 2006, Dynamic forces between two deformable oil droplets in water, Science 313(5784), 210–213.

    Article  Google Scholar 

  • Derjaguin, B., V. Muller and Y.P. Toporov, 1975, Effect of contact deformations on the adhesion of particles, J. Colloid Interf. Sci. 53(2), 314–326.

    Article  Google Scholar 

  • Drummond, C. and J.N. Israelachvili, 2000, Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear, Macromolecules 33(13), 4910–4920.

    Article  Google Scholar 

  • Faghihnejad, A. and H.B. Zeng, 2012, Hydrophobic interactions between polymer surfaces: using polystyrene as a model system, Soft Matter 8(9), 2746–2759.

    Article  Google Scholar 

  • Frantz, P., F. Wolf, X.D. Xiao, Y. Chen, S. Bosch and M. Salmeron, 1997, Design of surface forces apparatus for tribology studies combined with nonlinear optical spectroscopy, Rev. Sci. Instrum. 68(6), 2499–2504.

    Article  Google Scholar 

  • Gee, M.L., P.M. McGuiggan, J.N. Israelachvili and A.M. Homola, 1990, Liquid to solidlike transitions of molecularly thin films under shear, J. Chem. Phys. 93(3), 1895–1906.

    Article  Google Scholar 

  • Golan, Y., A. Martin-Herranz, Y. Li, C.R. Safinya and J.N. Israelachvili, 2001, Direct observation of shear-induced orientational phase coexistence in a lyotropic system using a modified X-ray surface forces apparatus, Phys. Rev. Lett. 86(7), 1263–1266.

    Article  Google Scholar 

  • Gosvami, N.N., S.K. Sinha, W. Hofbauer and S.J. O’Shea, 2007, Solvation and squeeze out of hexadecane on graphite, J. Chem. Phys. 126(21), 214708.

    Article  Google Scholar 

  • Granick, S., 1991, Motions and relaxations of conned liquids, Science 253, 1374–1379.

    Article  Google Scholar 

  • Greene, G.W., T.H. Anderson, H. Zeng, B. Zappone and J.N. Israelachvili, 2009 Force amplification response of actin filaments under confined compression, Proc. Natl. Acad. Sci. U.S.A. 106(2), 445–449.

    Article  Google Scholar 

  • Greene, G.W., B. Zappone, O. Soderman, D. Topgaard, G. Rata, H.B. Zeng and J.N. Israelachvili, 2010, Anisotropic dynamic changes in the pore network structure, fluid diffusion and fluid flow in articular cartilage under compression, Biomaterials. 31(12), 3117–3128.

    Article  Google Scholar 

  • Greene, G.W., X. Banquy, D.W. Lee, D.D. Lowrey, J. Yu and J.N. Israelachvili, 2011, Adaptive mechanically controlled lubrication mechanism found in articular joints, Proc. Natl. Acad. Sci. U.S.A. 108(13), 5255–5259.

    Article  Google Scholar 

  • Horn, R.G. and J.N. Israelachvili, 1981, Direct measurement of structural forces between two surfaces in a nonpolar liquid, J. Chem. Phys. 75, 1400–1411.

    Article  Google Scholar 

  • Horn, R.G and J.N. Israelachvili, 1988, Molecular organization and viscosity of a thin film of molten polymer between two surfaces as probed by force measurements, Macromolecules 21(9), 2836–2841.

    Article  Google Scholar 

  • Israelachvili, J.N. and D. Tabor, 1972, The Measurement of van der Waals Dispersion Forces in the Range 1.5 to 130 nm, Proc. Roy. Soc. (London) A331,19–38.

    Article  Google Scholar 

  • Israelachvili, J.N., 1986(a), Measurement of the Viscosity of Liquids in Very Thin-Films, J. Colloid Interf. Sci. 110(1), 263–271.

    Article  Google Scholar 

  • Israelachvili, J.N., 1986(b), Measurements of the viscosity of thin fluid films between two surfaces with and without adsorbed polymers, Colloid Polym. Sci. 264(12), 1060–1065.

    Article  Google Scholar 

  • Israelachvili, J.N., 1988, Measurements and relation between the dynamic and static interactions between surfaces separated by thin liquid and polymer-films, Pure Appl. Chem. 60(10), 1473–1478.

    Article  Google Scholar 

  • Israelachvili, J.N., S.J. Kott and L.J. Fetters, 1989(a), Measurements of dynamic interactions in thin films of polymer melts: The transition from simple to complex behavior, J. Polym. Sci., Part B: Polym. Phys. 27(3), 489–502.

    Article  Google Scholar 

  • Israelachvili, J.N. and S.J. Kott, 1989(b), Shear properties and structure of simple liquids in molecularly thin-films the transition from bulk (continuum) to molecular behavior with decreasing film thickness, J. Colloid Interf. Sci. 129(2), 461–467.

    Article  Google Scholar 

  • Israelachvili, J.N., P. Mcguiggan, M. Gee, A. Homola, M. Robbins and P. Thompson, 1990, Liquid dynamics in molecularly thin-films, J. Phys.: Condens. Matter. 2, SA89–SA98.

    Google Scholar 

  • Israelachvili, J.N., Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika, K. Rosenberg and H. Zeng, 2010, Recent advances in the surface forces apparatus (SFA) technique, Rep. Prog. Phys. 73(3), 1–16.

    Article  Google Scholar 

  • Israelachvili, J.N., 2011, Intermolecular and Surface Forces, 3rd Edition, Academic Press, Santa Barbara.

    Google Scholar 

  • Jabbarzadeh, A. and R.I. Tanner, 2006, Molecular dynamics simulation and its application tos nano-rheology, Rheol. Rev., 165–216.

    Google Scholar 

  • Jeon, J. and M-S. Chun, 2007, Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/nanochannels, J. Chem. Phys. 126(15), 154904, 1–10.

    Article  Google Scholar 

  • Johnson, K., K. Kendall and A. Roberts, 1971, Surface energy and the contact of elastic solids, Proc. Roy. Soc. (London) A 324(1558), 301–313.

    Article  Google Scholar 

  • Kappl, M. and H.J. Butt, 2002, The colloidal probe technique and its application to adhesion force measurements, Part. Part. Syst. Char. 19(3), 129–143

    Article  Google Scholar 

  • Klein, J., Y. Kamiyama, H. Yoshizawa, J.N. Israelachvili, G.H. Fredrickson, P. Pincus and L.J. Fetters, 1993, Lubrication forces between surfaces bearing polymer brushes, Macromolecules 26(21), 5552–5560.

    Article  Google Scholar 

  • Klein, J., E. Kumacheva, D. Perahia, D. Mahalu and S. Warburg, 1994(a), Interfacial sliding of polymer-bearing surfaces, Faraday. Discuss. 98, 173–188.

    Article  Google Scholar 

  • Klein, J., E. Kumacheva, D. Mahalu, D. Perahia and L.J. Fetters, 1994(b), Reduction of frictional forces between solid-surfaces bearing polymer brushes, Nature 370(6491), 634–636.

    Article  Google Scholar 

  • Klein, J. and E. Kumacheva, 1995, Confinement-induced phase transitions in simple liquids, Science 269(5225), 816–819.

    Article  Google Scholar 

  • Klein, J., 2006, Molecular mechanisms of synovial joint lubrication, P. I. Mech. Eng. J-J. Eng. 220(J8), 691–710.

    Google Scholar 

  • Kobayashi, M., H. Yamaguchi, Y. Terayama, Z. Wang, K. Ishihara, M. Hino and A. Takahara, 2009, Structure and Surface Properties of High-density Polyelectrolyte Brushes at the Interface of Aqueous Solution, Macromol. Symp. 279(1), 79–87.

    Article  Google Scholar 

  • Kobayashi, M., Y. Terayama, M. Kikuchi and A. Takahara, 2013, Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups, Soft Matter 9(21), 5138–5148.

    Article  Google Scholar 

  • Kristiansen, K., H.B. Zeng, P. Wang and J.N. Israelachvili, 2011, Microtribology of aqueous carbon nanotube dispersions, Adv. Funct. Mater. 21(23), 4555–4564.

    Article  Google Scholar 

  • Kristiansen, K., X. Banquy, H.B. Zeng, E. Charrault, S. Giasson and J.N. Israelachvili, 2012, Measurements of anisotropic (Offaxis) friction-induced motion, Adv. Mater. 24(38), 5236–5241.

    Article  Google Scholar 

  • Laurent, J., A. Steinberger and L. Bellon, 2013, Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements, Nanotechnology 24(22), 225504, 1–13.

    Article  Google Scholar 

  • Luengo, G., J.N. Israelachvili and S. Granick, 1996, Generalized effects in confined fluids: new friction map for boundary lubrication, Wear 200(1–2), 328–335.

    Article  Google Scholar 

  • Maali, A. and B. Bhushan, 2008, Nanorheology and boundary slip in confined liquids using atomic force microscopy, J. Phys.: Condens. Mat. 20(31), 315201, 1–11.

    Google Scholar 

  • Maugis, D., 1992, Adhesion of Spheres — the JKR-DMT Transition Using a Dugdale Model, J. Colloid Interf. Sci 150(1), 243–269.

    Article  Google Scholar 

  • Morrell, K.C., W.A. Hodge, D.E. Krebs and R.W. Mann, 2005, Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation, Proc. Natl. Acad. Sci. U.S.A. 102(41), 14819–14824.

    Article  Google Scholar 

  • Mukhopadhyay, A. and S. Granick, 2001, Micro- and nanorheology, Curr. Opin. Colloid Interface Sci. 6(5–6), 423–429.

    Article  Google Scholar 

  • Nase, J., A. Lindner and C. Creton, 2008, Pattern formation during deformation of a confined viscoelastic layer: From a vis cous liquid to a soft elastic solid, Phys. Rev. Lett. 101(7), 074503, 1–4.

    Article  Google Scholar 

  • Oshea, S.J., M.E. Welland and T. Rayment, 1992, Solvation forces near a graphite surface measured with an atomic force microscope, Appl. Phys. Lett. 60(19), 2356–2358.

    Article  Google Scholar 

  • Oshea, S.J., M.E. Welland and J.B. Pethica, 1994, Atomic-force microscopy of local compliance at solid-liquid interfaces, Chem. Phys. Lett. 223(4), 336–340.

    Article  Google Scholar 

  • Priezjev, N.V., 2012, Interfacial friction between semiflexible polymers and crystalline surfaces, J. Chem. Phys. 136(22), 224702, 1–10.

    Article  Google Scholar 

  • Raviv, U., S. Giasson, N. Kampf, J.F. Gohy, R. Jerome and J. Klein, 2003, Lubrication by charged polymers, Nature 425(6954), 163–165.

    Article  Google Scholar 

  • Rhykerd, C., M. Schoen, D. Diester and J. Cushman, 1987, Epitaxy in simple classical fluids in micropores and near-solid surfaces, Nature 330, 461–463.

    Article  Google Scholar 

  • Ruths, M. and J.N. Israelachvili, 2011, Surface Forces and Nanorheology of Molecularly Thin Films, in Nanotribology and Nanomechanics II, Springer.

    Google Scholar 

  • Schoen, M., D.J. Diestler and J.H. Cushman, 1994, Fluids in Micropores. The behavior of molecularly thin Cconfined films in the grand isostress ensemble, J. Chem. Phys. 100(10), 7707–7717.

    Article  Google Scholar 

  • Tabor, D. and R. Winterton, 1969, The direct measurement of normal and retarded van der Waals forces, Proc. Roy. Soc. (London) A 312(1511), 435–450.

    Article  Google Scholar 

  • Tabor, R.F., D.Y.C. Chan, F. Grieser and R.R. Dagastine, 2011, Anomalous stability of carbon dioxide in pH-Controlled bubble coalescence, Angew. Chem. Int. Edit. 50(15), 3454–3456.

    Article  Google Scholar 

  • Thompson, P.A. and M.O. Robbins, 1990, Origin of stick-slip motion in boundary lubrication, Science 250(4982), 792–794.

    Article  Google Scholar 

  • Tian, Y., M.L. Zhang, J.L. Jiang, N. Pesika, H.B. Zeng, J.N. Israelachvili, Y.G. Meng and S.Z. Wen, 2011, Reversible shear thickening at low shear rates of electrorheological fluids under electric fields, Phys. Rev. E 83(1), 011401, 1–8.

    Article  Google Scholar 

  • Vakarelski, I.U., R. Manica, X.S. Tang, S.J. O’Shea, G.W. Stevens, F. Grieser, R.R. Dagastine and D.Y.C. Chan, 2010, Dynamic interactions between microbubbles in water, Proc. Natl. Acad. Sci. U.S.A. 107(25), 11177–11182.

    Article  Google Scholar 

  • Wen, W.J., X.X. Huang, S.H. Yang, K.Q. Lu and P. Sheng, 2003, The giant electrorheological effect in suspensions of nanoparticles, Nature Mater. 2(11), 727–730.

    Article  Google Scholar 

  • Yamamoto, S., M. Ejaz, Y. Tsujii and T. Fukuda, 2000, Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy, Macromolecules. 33(15), 5608–5612.

    Article  Google Scholar 

  • Zappone, B., M. Ruths, G.W. Greene, G.D. Jay and J.N. Israelachvili, 2007, Adsorption, lubrication, and wear of lubricin on model surfaces: Polymer brush-like behavior of a glycoprotein, Biophys. J. 92(5), 1693–1708.

    Article  Google Scholar 

  • Zeng, H., Y. Tian, B. Zhao, M. Tirrell, L.G. Leal and J.N. Israelachvili, 2007(a), Transient surface patterns during adhesion and coalescence of thin liquid films, Soft Matter, 3, 88–93.

    Article  Google Scholar 

  • Zeng, H., Y. Tian, B. Zhao, M. Tirrell and J.N. Israelachvili, 2007(b), Transient interfacial patterns and instabilities associated with liquid film adhesion and spreading. Langmuir, 23(11), 6126–6135.

    Article  Google Scholar 

  • Zeng, H., Y. Tian, B. Zhao, M. Tirrell and J.N. Israelachvili, 2007(c), Transient surface patterns and instabilities at adhesive junctions of viscoelastic films. Macromolecules 40(23), 8409–8422.

    Article  Google Scholar 

  • Zeng, H., Y. Tian, T.H. Anderson, M. Tirrell and J.N. Israelachvili, 2008, New SFA techniques for studying surface forces and thin film patterns induced by electric fields, Langmuir. 24(4), 1173–1182.

    Article  Google Scholar 

  • Zeng, H., Y. Tian, B.X. Zhao, M. Tirrell and J.N. Israelachvili, 2009, Friction at the liquid/liquid interface of two immiscible polymer films, Langmuir. 25(9), 4954–4964.

    Article  Google Scholar 

  • Zeng, H., B.X. Zhao, J.N. Israelachvili and M. Tirrell, 2010, Liquid- to solid-like failure mechanism of thin polymer films at micro- and nanoscales, Macromolecules. 43(1), 538–542.

    Article  Google Scholar 

  • Zeng, H. (ed.), 2013, Polymer Adhesion, Friction, and Lubrication, John Wiley & Sons, Hoboken, NJ, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Yan, B., Faghihnejad, A. et al. Understanding nanorheology and surface forces of confined thin films. Korea-Aust. Rheol. J. 26, 3–14 (2014). https://doi.org/10.1007/s13367-014-0002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-014-0002-8

Keywords

Navigation