Skip to main content
Log in

Mechanistic Investigation of Phosphate Ester Bond Cleavages of Glycylphosphoserinyltryptophan Radical Cations under Low-Energy Collision-Induced Dissociation

  • Focus: Distonic Ions: Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Under the conditions of low-energy collision-induced dissociation (CID), the canonical glycylphosphoserinyltryptophan radical cation having its radical located on the side chain of the tryptophan residue ([G p SW]•+) fragments differently from its tautomer with the radical initially generated on the α-carbon atom of the glycine residue ([G p SW]+). The dissociation of [G p SW]+ is dominated by the neutral loss of H3PO4 (98 Da), with backbone cleavage forming the [b2 – H]•+/y1 + pair as the minor products. In contrast, for [G p SW]•+, competitive cleavages along the peptide backbone, such as the formation of [G p SW – CO2]•+ and the [c2 + 2H]+/[z1 – H]•+ pair, significantly suppress the loss of neutral H3PO4. In this study, we used density functional theory (DFT) to examine the mechanisms for the tautomerizations of [G p SW]+ and [G p SW]•+ and their dissociation pathways. Our results suggest that the dissociation reactions of these two peptide radical cations are more efficient than their tautomerizations, as supported by Rice–Ramsperger–Kassel–Marcus (RRKM) modeling. We also propose that the loss of H3PO4 from both of these two radical cationic tautomers is preferentially charge-driven, similar to the analogous dissociations of even-electron protonated peptides. The distonic radical cationic character of [G p SW]+ results in its charge being more mobile, thereby favoring charge-driven loss of H3PO4; in contrast, radical-driven pathways are more competitive during the CID of [G p SW]•+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5

Similar content being viewed by others

References

  1. Hunter, T.: Signaling—2000 and beyond. Cell 100, 113–127 (2000)

    Article  CAS  Google Scholar 

  2. Palumbo, A.M., Tepe, J.J., Reid, G.E.: Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides. J. Proteome Res. 7, 771–779 (2008)

    Article  CAS  Google Scholar 

  3. Ruijtenbeek, R., Versluis, C., Heck, A.J.R., Redegeld, F.A.M., Nijkamp, F.P., Liskamp, R.M.J.: Characterization of a phosphorylated peptide and peptoid and peptoid–peptide hybrids by mass spectrometry. J. Mass Spectrom. 37, 47–55 (2002)

    Article  CAS  Google Scholar 

  4. Kang, J., Toita, R., Jiang, Y., Niidome, T., Katayama, Y.: Simultaneous analysis of phosphorylated peptides by MALDI-TOF-MS. Chromatographia 63, 595–598 (2006)

    Article  CAS  Google Scholar 

  5. Bailey, C.M., Sweet, S.M.M., Cunningham, D.L., Zeller, M., Heath, J.K., Cooper, H.J.: SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J. Proteome Res. 8, 1965–1971 (2009)

    Article  CAS  Google Scholar 

  6. Gehrig, P.M., Roschitzki, B., Rutishauser, D., Reiland, S., Schlapbach, R.: Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions. Rapid Commun. Mass Spectrom. 23, 1435–1445 (2009)

    Article  CAS  Google Scholar 

  7. Mann, M., Ong, S.E., Gronforg, M., Steen, H., Jensen, O.N., Pandey, A.: Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002)

    Article  CAS  Google Scholar 

  8. Hoffert, J.D., Knepper, M.A.: Taking aim at shotgun phosphoproteomics. Anal. Biochem. 375, 1–10 (2008)

    Article  CAS  Google Scholar 

  9. Laskin, J., Futrell, J.H.: Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom. Rev. 24, 135–167 (2005)

    Article  CAS  Google Scholar 

  10. Zubarev, R.A.: Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom. Rev. 22, 57–77 (2003)

    Article  CAS  Google Scholar 

  11. Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 101, 9528–9533 (2004)

    Article  CAS  Google Scholar 

  12. Barlow, C.K., McFadyen, W.D., O’Hair, R.A.J.: Formation of cationic peptide radicals by gas-phase redox reactions with trivalent chromium, manganese, iron, and cobalt complexes. J. Am. Chem. Soc. 127, 6109–6115 (2005)

    Article  CAS  Google Scholar 

  13. Hodyss, R., Cox, H.A., Beauchamp, J.L.: Bioconjugates for tunable peptide fragmentation: free radical initiated peptide sequencing (FRIPS). J. Am. Chem. Soc. 127, 12436–12437 (2005)

    Article  CAS  Google Scholar 

  14. Hopkinson, A.C., Siu, K.W.M.: Peptide radical cations. In: Principles of Mass Spectrometry Applied to Biomolecules, pp. 301–335. John Wiley and Sons, New Jersey (2006)

    Chapter  Google Scholar 

  15. Kemp, M., Roitberg, A., Mujica, V., Wanta, T., Ratner, M.A.: Molecular wires: extended coupling and disorder effects. J. Phys. Chem. 100, 8349–8355 (1996)

    Article  CAS  Google Scholar 

  16. Laskin, J., Yang, Z., Lam, C., Chu, I.K.: Charge-remote fragmentation of odd-electron peptide ions. Anal. Chem. 79, 6607–6614 (2007)

    Article  CAS  Google Scholar 

  17. Levis, R.J.: Laser desorption and ejection of biomolecules from the condensed phase into the gas phase. Annu. Rev. Phys. Chem. 45, 483–518 (1994)

    Article  CAS  Google Scholar 

  18. Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2007)

    Article  Google Scholar 

  19. Ly, T., Julian, R.R.: Ultraviolet photodissociation: developments towards applications for mass-spectrometry-based proteomics. Angew. Chem. Int. Ed. 48, 7130–7137 (2009)

    Article  CAS  Google Scholar 

  20. Matsumoto, Y., Watanabe, K.: Coherent vibrations of adsorbates induced by femtosecond laser excitation. Chem. Rev. 106, 4234–4260 (2006)

    Article  CAS  Google Scholar 

  21. Schlag, E.W., Lin, S.H., Weinkauf, R., Rentzepis, P.M.: Dynamical principles in biological processes. Proc. Natl. Acad. Sci. U. S. A. 95, 1358–1362 (1998)

    Article  CAS  Google Scholar 

  22. Hopkinson, A.C.: Radical cations of amino acids and peptides: structures and stabilities. Mass Spectrom. Rev. 28, 655–671 (2009)

    Article  CAS  Google Scholar 

  23. Chu, I.K., Lam, C.N.W.: Generation of peptide radical dications via low-energy collision-induced dissociation of [CuII(terpy)(M + H)]•3+. J. Am. Soc. Mass Spectrom. 16, 1795–1804 (2005)

    Article  CAS  Google Scholar 

  24. Chu, I.K., Lam, C.N.W., Siu, S.O.: Facile generation of tripeptide radical cations in vacuo via intramolecular electron transfer in CuII tripeptide complexes containing sterically encumbered terpyridine ligands. J. Am. Soc. Mass Spectrom. 16, 763–771 (2005)

    Article  CAS  Google Scholar 

  25. Chu, I.K., Siu, S.O., Lam, C.N.W., Chan, J.C.Y., Rodriquez, C.F.: Formation of molecular radical cations of aliphatic tripeptides from their complexes with CuII(12-crown-4). Rapid Commun. Mass Spectrom. 18, 1798–1802 (2004)

    Article  CAS  Google Scholar 

  26. Lam, C.N.W., Chu, I.K.: Formation of anionic peptide radicals in vacuo. J. Am. Soc. Mass Spectrom. 17, 1249–1257 (2006)

    Article  CAS  Google Scholar 

  27. Lam, C.N.W., Ruan, E.D.L., Ma, C.Y., Chu, I.K.: Non-zwitterionic structures of aliphatic-only peptides mediated the formation and dissociation of gas phase radical cations. J. Mass Spectrom. 41, 931–938 (2006)

    Article  CAS  Google Scholar 

  28. Kong, R.P.W., Quan, Q., Hao, Q., Lai, C.K., Siu, C.K., Chu, I.K.: Formation and dissociation of phosphorylated peptide radical cations. J. Am. Soc. Mass Spectrom. 23, 2094–2101 (2012)

    Article  CAS  Google Scholar 

  29. Palumbo, A.M., Reid, G.E.: Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal. Chem. 80, 9735–9747 (2008)

    Article  CAS  Google Scholar 

  30. Henke, W., Kremer, S., Reinen, D.: Cu2+ in five-coordination: a case of a second-order Jahn–Teller effect. 1. Structure and spectroscopy of the compounds Cu(terpy)X2•nH2O. Inorg. Chem. 22, 2858–2863 (1983)

    Article  CAS  Google Scholar 

  31. Chan, W.C., White, P.D.: Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press, New York (2000)

    Google Scholar 

  32. SPARTAN, '04 Essential V2.0.0. Wavefunction, Inc., Irvine (2004)

  33. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford (2004)

    Google Scholar 

  34. Baer, T., Hase, W.L.: Unimolecular Reaction Dynamics: Theory and Experiments. Oxford University Press, New York (1996)

    Google Scholar 

  35. Baer, T., Mayer, P.M.: Statistical Rice–Ramsperger–Kassel–Marcus quasiequilibrium theory calculations in mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 103–115 (1997)

    Article  CAS  Google Scholar 

  36. Ng, D.C.M., Song, T., Siu, S.O., Siu, C.K., Laskin, J., Chu, I.K.: Formation, isomerization, and dissociation of α-carbon-centered and π-centered glycylglycyltryptophan radical cations. J. Phys. Chem. B 114, 2270–2280 (2010)

    Article  CAS  Google Scholar 

  37. Siu, C.K., Ke, Y., Orlova, G., Hopkinson, A.C., Siu, K.W.M.: Dissociation of the N–Cα bond and competitive formation of the [zn – H]•+ and [cn + 2H]+ product ions in radical peptide ions containing tyrosine and tryptophan: the influence of proton affinities on product formation. J. Am. Soc. Mass Spectrom. 19, 1799–1807 (2008)

    Article  CAS  Google Scholar 

  38. Song, T., Hao, Q., Law, C.H., Siu, C.K., Chu, I.K.: Novel Cβ–Cγ bond cleavages of tryptophan-containing peptide radical cations. J. Am. Soc. Mass Spectrom. 23, 264–273 (2012)

    Article  CAS  Google Scholar 

  39. Song, T., Ma, C.Y., Chu, I.K., Siu, C.K., Laskin, J.: Mechanistic examination of Cβ–Cγ bond cleavages of tryptophan residues during dissociations of molecular peptide radical cations. J. Phys. Chem. A 117, 1059–1068 (2013)

    Google Scholar 

  40. Lioe, H., O’Hair, R.A.J.: Neighbouring group processes in the deamination of protonated phenylalanine derivatives. Org. Biomol. Chem. 3, 3618–3628 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Hong Kong Research Grants Council (RGC), Hong Kong Special Administrative Region (HKSAR), China, for financial support (HKU7016/10P and HKU7016/11P). Q.Q. thanks the Hong Kong RGC for supporting her studentship. C.K.S. is grateful to City University of Hong Kong for financial support (project no. 7002733). I.K.C. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Kit Siu or Ivan K. Chu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 473 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, Q., Hao, Q., Song, T. et al. Mechanistic Investigation of Phosphate Ester Bond Cleavages of Glycylphosphoserinyltryptophan Radical Cations under Low-Energy Collision-Induced Dissociation. J. Am. Soc. Mass Spectrom. 24, 554–562 (2013). https://doi.org/10.1007/s13361-013-0597-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0597-x

Key words

Navigation