Skip to main content
Log in

Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Smith, W.D.: Analytical chemistry at the forefront of homeland defense. Anal. Chem. 74, 462A–466A (2002)

    CAS  Google Scholar 

  2. Schneider, J.F., Boparai, A.S., Reed, L.L.: Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. Sci. 39, 420–424 (2001)

    Article  CAS  Google Scholar 

  3. Harvey, S.D., Nelson, D.A., Wright, B.W.: Selective stationary phase for solid-phase microextraction analysis of sarin (GB). J. Chromatogr. A 954, 217–225 (2002)

    Article  CAS  Google Scholar 

  4. Hook, G.L., Kimm, G., Betsinger, G., Savage, P.B., Swift, A., Logan, T., Smith, P.A.: Solid phase microextraction sampling and gas chromatography/mass spectrometry for field detection of the chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX). J. Sep. Sci. 26, 1091–1096 (2003)

    Article  CAS  Google Scholar 

  5. Nielsen, A.T., Jonsson, S.: Trace determination of volatile sulfur compounds by solid-phase microextraction and GC-MS. Analyst 127, 1045–1049 (2002)

    Article  CAS  Google Scholar 

  6. Ketkar, S.N., Penn, S.M.: Real-time detection of parts per trillion levels of chemical warfare agents in ambient air using atmospheric pressure ionization tandem quadrupole mass spectrometry. Anal. Chem. 63, 457–459 (1991)

    Article  CAS  Google Scholar 

  7. Cotte-Rodríguez, I., Justes, D.R., Nanita, S.C., Noll, R.J., Mulligan, C.C., Sanders, N.L., Cooks, R.G.: Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry. Analyst 131, 579–589 (2006)

    Article  Google Scholar 

  8. Makas, A., Troshkov, M., Kudryavtsev, A., Lunin, V.: Miniaturized mass-selective detector with atmospheric pressure chemical ionization. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 800, 63–67 (2004)

    Article  CAS  Google Scholar 

  9. Mulligan, C.C., Justes, D.R., Noll, R.J., Sanders, N.L., Laughlin, B.C., Cooks, R.G.: Direct monitoring of toxic compounds in air using a portable mass spectrometer. Analyst 131, 556–567 (2006)

    Article  CAS  Google Scholar 

  10. Smith, J.N., Noll, R.J., Cooks, R.G.: Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer. Rapid Commun. Mass Spectrom. 25, 1437–1444 (2011)

    Article  CAS  Google Scholar 

  11. Chen, H., Zheng, X., Cooks, R.G.: Ketalization of phosphonium ions by 1,4-dioxane: selective detection of the chemical warfare agent simulant DMMP in mixtures using ion/molecule reactions. J. Am. Soc. Mass Spectrom. 14, 182–188 (2003)

    Article  CAS  Google Scholar 

  12. Riter, L.S., Meurer, E.C., Handberg, E.S., Laughlin, B.C., Chen, H., Patterson, G.E., Eberlin, M.N., Cooks, R.G.: Ion/molecule reactions performed in a miniature cylindrical ion trap mass spectrometer. Analyst 128, 1112–1118 (2003)

    Article  CAS  Google Scholar 

  13. Chen, H., Xu, R., Cooks, R.G., Ouyang, Z.: Ion/molecule reactions in a miniature RIT mass spectrometer. J. Mass Spectrom. 40, 1403–1411 (2005)

    Article  CAS  Google Scholar 

  14. Vachet, R.W., Hartman, J.A.R., Callahan, J.H.: Ion/molecule reactions in a quadrupole ion trap as a probe of the gas-phase structure of metal complexes. J. Mass Spectrom. 33, 1209–1225 (1998)

    Article  CAS  Google Scholar 

  15. Combariza, M.Y., Vachet, R.W.: The Utility of Ion/molecule reactions in a quadrupole ion trap mass spectrometer for analyzing metal complex coordination structure. Anal. Chim. Acta 496, 233–248 (2003)

    Article  CAS  Google Scholar 

  16. Combariza, M.Y., Vachet, R.W.: Gas-phase ion-molecule reactions of transition metal complexes: the effect of different coordination spheres on complex reactivity. J. Am. Soc. Mass Spectrom. 13, 813–825 (2002)

    Article  CAS  Google Scholar 

  17. Wu, H.F., Brodbelt, J.S.: Gas-phase chelation reactions of monopositive cations with heteroaromatic ligands. Inorg. Chem. 34, 615–621 (1995)

    Article  CAS  Google Scholar 

  18. Reid, G.E., O’Hair, R.A.J., Styles, M.L.: Gas phase ion-molecule reactions in a modified ion trap: H/D Exchange of noncovalent complexes and coordinatively unsaturated platinum complexes. Rapid Commun. Mass Spectrom. 12, 1701–1708 (1998)

    Article  CAS  Google Scholar 

  19. Milburn, R.K., Baranov, V., Hopkinson, A.C., Bohme, D.K.: Gas-phase coordination of Mg+, (c-C5H5)Mg+, and (c-C5H5)2 Mg+ with small inorganic ligands. J. Phys. Chem. A 103, 6373–6382 (1999)

    Article  CAS  Google Scholar 

  20. Milburn, R.K., Frash, M.V., Hopkinson, A.C., Bohme, D.K.: Gas-phase coordination of Mg+, (c-C5H5)Mg+, and (c-C5H5)2 Mg+ with saturated hydrocarbons. J. Phys. Chem. A 104, 3926–3932 (2000)

    Article  CAS  Google Scholar 

  21. Milburn, R.K., Baranov, V.I., Hopkinson, A.C., Bohme, D.K.: Sequential ligation of Mg+, Fe+, (c-C5H5)Mg+, and (c-C5H5)Fe+ with ammonia in the gas phase: transition from coordination to solvation in the sequential ligation of Mg+. J. Phys. Chem. A 102, 9803–9810 (1998)

    Article  CAS  Google Scholar 

  22. Hartman, J.R., Vachet, R.W., Callahan, J.H.: Gas, solution, and solid state coordination environments for the nickel(ii) complexes of a series of aminopyridine ligands of varying coordination number. Inorg. Chim. Acta 297, 79–87 (2000)

    Article  CAS  Google Scholar 

  23. Vachet, R.W., Callahan, J.H.: Quadrupole ion trap studies of the structure and reactivity of transition metal ion pair complexes. J. Mass Spectrom. 35, 311–320 (2000)

    Article  CAS  Google Scholar 

  24. Vachet, R.W., Hartman, J.A.R., Gertner, J.W., Callahan, J.H.: Investigation of metal complex coordination structure using collision-induced dissociation and ion-molecule reactions in a quadrupole ion trap mass spectrometer. Int. J. Mass Spectrom. 204, 101–112 (2001)

    Article  Google Scholar 

  25. Baranov, V., Bohme, D.K.: Coordination chemistry of Fe+, (c-C5H5)Fe+, and (c-C5H5)2Fe+ in the gas phase at room temperature: kinetics of sequential ligation with hydrogen cyanide and cyanoacetylene. Int. J. Mass Spectrom. 210/211, 303–310 (2001)

    Article  CAS  Google Scholar 

  26. Perera, B.A., Ince, M.P., Talaty, E.R., Van Stipdonk, M.J.: Gas phase attachment of water and methanol to Ag(I) complexes with alpha-amino acids in an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 15, 615–622 (2001)

    Article  CAS  Google Scholar 

  27. Anbalagan, V., Perera, B.A., Silva, A.T.M., Gallardo, A.L., Barber, M., Barr, J.M., Tekarli, S.M., Talaty, E.R., Van Stipdonk, M.J.: Formation of [bn + 17 + Ag]+ product ions from Ag+ cationized native and acetylated peptides. J. Mass Spectrom. 37, 910–926 (2002)

    Article  CAS  Google Scholar 

  28. Hartman, J.R., Vachet, R.W., Pearson, W., Wheat, R.J., Callahan, J.H.: A Comparison of the gas, solution, and solid state coordination environments for the copper(ii) complexes of a series of aminopyridine ligands of varying coordination number. Inorg. Chim. Acta 343, 119–132 (2003)

    Article  CAS  Google Scholar 

  29. Hanna, D., Silva, M., Morrison, J., Tekarli, S., Anbalagan, V., Stipdonk, M.: Gas-phase hydration and alcohol addition reactions of complexes composed of Ag+ and a single alcohol molecule. J. Phys. Chem. A 107, 5528–5537 (2003)

    Article  CAS  Google Scholar 

  30. Gianotto, A.K., Hodges, B.D.M., de Harrington, P.: B., Appelhans, A.D., Olson, J.E., Groenewold, G.S.: Ion-Molecule reactions of gas-phase chromium oxyanions: CrxOyHz - + O2. J. Am. Soc. Mass Spectrom. 14, 1067–1075 (2003)

    Article  CAS  Google Scholar 

  31. Gresham, G.L., Gianotto, A.K., Harrington, P. de B., Cao, L., Scott, J.R., Olson, J.E., Appelhans, A.D., Van Stipdonk, M.J., Groenewold, G.S.: Gas-phase hydration of U (IV), U (V), and U (VI) dioxo monocations. J. Phys. Chem. A 107, 8530–8538 (2003)

  32. Chien, W., Anbalagan, V., Zandler, M., Van Stipdonk, M., Hanna, D., Gresham, G., Groenewold, G.: Intrinsic hydration of monopositive uranyl hydroxide, nitrate, and acetate cations. J. Am. Soc. Mass Spectrom. 15, 777–783 (2004)

    Article  CAS  Google Scholar 

  33. Vrkic, A.K., Taverner, T., James, P.F., O’Hair, R.A.J.: Gas phase ion chemistry of charged silver(i) adenine ions via multistage mass spectrometry experiments and DFT calculations. Dalton Trans. 197–208 (2004)

  34. Hartman, J.R., Combariza, M.Y., Vachet, R.W.: A comparison of the gas, solution, and solid state coordination environments for the Ni(II) complexes of a series of linear penta- and hexadentate aminopyridine ligands with accessible Ni(III) oxidation states. Inorg. Chim. Acta 357, 51–58 (2004)

    Article  CAS  Google Scholar 

  35. Hartman, J.A.R., Kammier, A.L., Spracklin, R.J., Pearson, W.H., Combariza, M.Y., Vachet, R.W.: A Comparison of the gas, solution, and solid state coordination environments for the Cu(II) complexes of a series of linear aminopyridine ligands with varying ratios of 5- and 6-membered chelate rings. Inorg. Chim. Acta 357, 1141–1151 (2004)

    Article  CAS  Google Scholar 

  36. Combariza, M.Y., Vachet, R.W.: Effect of coordination geometry on the gas-phase reactivity of four-coordinate divalent metal ion complexes. J. Phys. Chem. A 108, 1757–1763 (2004)

    Article  CAS  Google Scholar 

  37. Bartelt-Hunt, S.L., Knappe, D.R.U., Barlaz, M.A.: A review of chemical warfare agent simulants for the study of environmental behavior. Crit. Rev. Environ. Sci. Technol. 38, 112–136 (2008)

    Article  CAS  Google Scholar 

  38. Gao, L., Song, Q., Patterson, G.E., Cooks, R.G., Ouyang, Z.: Handheld rectilinear ion trap mass spectrometer. Anal. Chem. 78, 5994–6002 (2006)

    Article  CAS  Google Scholar 

  39. Gao, L., Cooks, R.G., Ouyang, Z.: Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface. Anal. Chem. 80, 4026–4032 (2008)

    Article  CAS  Google Scholar 

  40. Khurma, J.R., Muthu, O., Munjal, S., Smith, B.D.: Total-pressure vapor-liquid equilibrium data for binary systems of dichloromethane with pentane, acetone, ethyl acetate, methanol, and acetonitrile. J. Chem. Eng. Data 28, 412–419 (1983)

    Article  CAS  Google Scholar 

  41. Wu, Z., Ondruschka, B., Stark, A.: Ultrasonic cleavage of thioethers. J. Phys. Chem. A 109, 3762–3766 (2005)

    Article  CAS  Google Scholar 

  42. Page, F.M., Purnell, J.H.: Physical properties of the lower dialkyl hydrogen phosphites. J. Chem. Soc. 621–623 (1958)

  43. Kaiser, H.: Foundations for the critical discussions of analytical methods. Spectrochim. Acta B 33, 551–576 (1978)

    Article  Google Scholar 

  44. Fassel, V.A.: Nomenclature, symbols, units, and their usage in spectrochemical analysis—II. Data interpretation. Spectrochim. Acta B 33, 241–245 (1978)

    Article  Google Scholar 

  45. CDC, The Emergency Response Safety and Health Database, Centers for Disease Control and Prevention, Atlanta, GA, 2012. Available at: http://www.cdc.gov/niosh/ershdb/default.html/, accessed January 2013.

  46. A FOA Briefing Book on Chemical Weapons: Threat, Effects and Protection. Forsvarets Forskningsanstalt, Sweden (1992)

    Google Scholar 

  47. Combariza, M.Y., Fermann, J.T., Vachet, R.W.: Are gas-phase reactions of five-coordinate divalent metal ion complexes affected by coordination geometry? Inorg. Chem. 43, 2745–2753 (2004)

    Article  CAS  Google Scholar 

  48. Combariza, M.Y., Vachet, R.W.: Gas-phase reactions of divalent Ni complex ions with acetonitrile: chelate ring size, inductive, and steric effects. J. Am. Soc. Mass Spectrom. 15, 1128–1135 (2004)

    Article  CAS  Google Scholar 

  49. Combariza, M.Y., Fahey, A.M., Milshteyn, A., Vachet, R.W.: Gas-phase ion-molecule reactions of divalent metal complex ions: toward coordination structure analysis by mass spectrometry and some intrinsic coordination chemistry along the way. Int. J. Mass Spectrom. 244, 109–124 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Office of Naval Research through the DURIP program (grant N000-14-07-1-0980) for support of this work. They also thank Professor Graham Cooks, Dr. Robert Noll, Dr. Ewa Sokol, Dr. Nathan Sanders, and Dr. Guangming Huang from Purdue University for technical assistance with the Mini 10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Vachet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graichen, A.M., Vachet, R.W. Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents. J. Am. Soc. Mass Spectrom. 24, 917–925 (2013). https://doi.org/10.1007/s13361-013-0592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0592-2

Key words

Navigation