Skip to main content
Log in

Expressions of juvenile hormone biosynthetic genes during presoldier differentiation in the incipient colony of Zootermopsis nevadensis (Isoptera: Archotermopsidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Soldier differentiations require high juvenile hormone (JH) titers in workers and two molts via a presoldier stage. However, it is still unclear when the endogenous JH titer increases in workers, because identifying an individual before it undergoes the presoldier molt is quite difficult in natural conditions. In an incipient colony of Zootermopsis nevadensis Hagen, the oldest 3rd instar larva (Νo. 1 larva) always differentiates into a presoldier and the second 3rd instar larva (Νo. 2 larva) molts into a 4th instar larva. Consequently, by focusing on the ontogeny of the Νo. 1 larva, the timing of the increase in the JH titer can be determined. Here, we compared the expression levels of JH biosynthetic genes in the heads of Νo. 1 and Νo. 2 larvae. Most genes involved in JH biosynthesis were found in a genome database, and two candidate JH epoxidase (CYP15A1) genes were identified. Expression levels of JH acid methyltransferase (JHAMT) and one candidate CYP15A1, probably involved in the final steps of the JH biosynthesis, were specifically high in Νo. 1 larvae at 2–3 and 4–5 days after the appearance, respectively. Expression patterns of these genes may be used for the prediction of endogenous JH titer changes during presoldier differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Bélles X, Martín D, Piulachs M-D (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199

    Article  PubMed  Google Scholar 

  • Bomtorin AD, Mackert A, Rosa GCC, Moda LM, Martins JR, Bitondi MMG, Hartfelder K, Simões ZLP (2014) Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes. PLoS One 9(1):e86923

    Article  PubMed Central  PubMed  Google Scholar 

  • Cornette R, Gotoh H, Koshikawa S, Miura T (2008a) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti. J Insect Physiol 54:922–930

    Article  CAS  PubMed  Google Scholar 

  • Cornette R, Koshikawa S, Miura T (2008b) Histology of the hormone-producing glands in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae): a focus on soldier differentiation. Insect Soc 55:407–416

    Article  Google Scholar 

  • Cornette R, Hayashi Y, Koshikawa S, Miura T (2013) Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae). J Insect Physiol 59:509–518

    Article  CAS  PubMed  Google Scholar 

  • Cymborowski B, Bogus M, Backage NE, Williams CM, Riddiford LM (1982) Juvenile hormone titres and metabolism during starvation-induced supernumerary larval moulting of the tobacco hornworm, Manduca sexta L. J Insect Physiol 28:129–135

    Article  CAS  Google Scholar 

  • Daimon T, Kozaki T, Niwa R et al (2012) Precocious metamorphosis in the juvenile hormone—deficient mutant of the silkworm. Bombyx mori. PLoS Genet 8(3):e1002486

    CAS  PubMed  Google Scholar 

  • Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol 2. Academic Press, New York, pp 1–76

    Google Scholar 

  • Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 34:1252–1255

    Article  CAS  PubMed  Google Scholar 

  • Hartfelder K (2000) Insect juvenile hormone: from “status quo” to high society. Braz J Med Biol Res 33:157–177

    Article  CAS  PubMed  Google Scholar 

  • Hartfelder K, Emlen DJ (2012) Endocrine control of insect polyphenism. In: Gilbert LI (ed) Insect endocrinology. Elsevier, Boston, pp 464–522

    Chapter  Google Scholar 

  • Haverty MI (1977) The proportion of soldiers in termite colonies: a list and bibliography. Sociobiology 2:199–216

    Google Scholar 

  • Haward RW, Haverty MI (1979) Termites and juvenile hormone analogues: a review of methodology and observed effects. Sociobiology 4:269–278

    Google Scholar 

  • Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci USA 101:4024–4029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson G (1998) Primer pheromones and possible soldier caste influence on the evolution of sociality in lower termites. In: Meer RKV, Breed MD, Winston ML, Espelie KE (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 314–330

    Google Scholar 

  • Itano H, Maekawa K (2008) Soldier differentiation and larval juvenile hormone sensitivity in an incipient colony of the damp-wood termite Zootermopsis nevadensis (Isoptera, Termopsidae). Sociobiology 51:1–12

    Google Scholar 

  • Kinjoh T, Kaneko Y, Itoyama K, Mita K, Hiruma K, Shinoda T (2007) Control of juvenile hormone biosynthesis in Bombyx mori: cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochem Mol Biol 37:808–818

    Article  CAS  PubMed  Google Scholar 

  • Korb J, Hoffmann K, Hartfelder K (2009) Endocrine signatures underlying plasticity in postembryonic development of lower termite, Cryptotermes secundus (Kalotermitidae). Evol Dev 11:269–277

    Article  CAS  PubMed  Google Scholar 

  • Koshikawa S, Cornette R, Hojo M, Maekawa K, Matsumoto T, Miura T (2005) Screening of genes expressed in developing mandibles during soldier differentiation in the termite Hodotermopsis sjostedti. FEBS Lett 579:1365–1370

    Article  CAS  PubMed  Google Scholar 

  • Lo N, Eggeleton P (2011) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termite: a modern synthesis. Springer, Heidelberg, pp 27–50

    Google Scholar 

  • Maekawa K, Ishitani K, Gotoh H, Cornette R, Miura T (2010) Juvenile hormone titre and vitellogenin gene expression related to ovarian development in primary reproductives compared with nymphs and nymphoid reproductives of the termite Reticulitermes speratus. Physiol Entomol 35:52–58

    Article  CAS  Google Scholar 

  • Maekawa K, Nakamura S, Watanabe D (2012) Termite soldier differentiation in incipient colonies is related to parental proctodeal trophallactic behavior. Zool Sci 29:213–217

    Article  PubMed  Google Scholar 

  • Maekawa K, Hayashi Y, Lee T, Lo N (2014) Presoldier differentiation of Australian termite species induced by juvenile hormone analogues. Austral Entomol 53:138–143

    Article  Google Scholar 

  • Marchal E, Zhang J, Badisco L, Verlinden H, Hult EF, Wielendaele PV, Yagi KJ, Tobe SS, Broeck JV (2011) Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 41:219–227

    Article  CAS  PubMed  Google Scholar 

  • Masuoka Y, Miyazaki S, Saiki R, Tsutomu T, Maekawa K (2013) High Laccase2 expression is likely involved in the formation of specific cuticular structures during soldier differentiation of the termite Reticulitermes speratus. Arthropod Struct Dev 42:469–475

    Article  PubMed  Google Scholar 

  • Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7:122–129

    Article  PubMed  Google Scholar 

  • Miura T, Scharf ME (2011) Molecular basis underlying caste differentiation in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termite: a modern synthesis. Springer, Heidelberg, pp 211–253

    Google Scholar 

  • Nijhout HF (1999) Control mechanisms of polyphenic development in insects. BioSience 49:181–192

    Article  Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  PubMed  Google Scholar 

  • Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Q Rev Biol 57:109–133

    Article  CAS  Google Scholar 

  • Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43:851–952

    Article  Google Scholar 

  • Noriega FG (2004) Nutritional regulation of JH synthesis: a mechanism to control reproductive maturation in mosquitoes? Insect Biochem Mol Biol 34:687–693

    Article  CAS  PubMed  Google Scholar 

  • Noriega FG, Ribeiro JMC, Koener JF, Valenzuela JG, Hernandez-Martinez S, Pham VM, Feyereisen R (2006) Comparative genomics of insect hormone biosynthesis. Insect Biochem Mol Biol 36:366–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogino K, Hirono Y, Matsumoto T, Ishikawa H (1993) Juvenile hormone analogue, S-31183, causes a high level induction of presoldier differentiation in the Japanese damp-wood termite. Zool Sci 10:361–366

    CAS  Google Scholar 

  • Park IY, Raina AK (2004) Juvenile hormone III titers and regulation of soldier caste in Coptotermes formosanus (Isoptera: Rhinotermitidae). J Insect Physiol 50:561–566

    Article  CAS  PubMed  Google Scholar 

  • Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Press, Dortrecht, pp 95–119

    Chapter  Google Scholar 

  • Saiki R, Gotoh H, Toga K, Miura T, Maekawa K (2015) High juvenile hormone titer and abdominal activation of the JH signaling may induce reproduction of termite neotenics. Insect Mol Biol 24(4):432–441

  • Scharf ME, Ratliff CR, Hoteling JT, Pittendrigh BR, Bennett GW (2003) Caste differentiation responses of two sympatric Reticulitermes termite species to juvenile hormone homologs and synthetic juvenoids in two laboratory assays. Insectes Soc 50:346–354

    Article  Google Scholar 

  • Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci USA 100:11986–11991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Perterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarver MR, Coy MR, Scharf ME (2012) Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differentiation in the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 80:92–108

    Article  CAS  PubMed  Google Scholar 

  • Terrapon N, Li C, Robertson HM et al (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:3636

    Article  CAS  PubMed  Google Scholar 

  • Toga K, Hojo M, Miura T, Maekawa K (2009) Presoldier induction by a juvenile hormone analog in the nasute termite Nasutitermes takasagoensis (Isoptera: Termitidae). Zool Sci 26:382–388

    Article  PubMed  Google Scholar 

  • Toga K, Hojo M, Miura T, Maekawa K (2012) Expression and function of a limb-patterning gene Distal-less in the soldier-specific morphogenesis in the nasute termite Nasutitermes takasagoensis. Evol Dev 4:286–295

    Article  Google Scholar 

  • Toga K, Saiki R, Maekawa K (2013) Hox gene deformed is likely involved in mandibular regression during presoldier differentiation in the nasute termite Nasutitermes takasagoensis. J Exp Zool 9999:1–8

    Google Scholar 

  • Treiblmayr K, Pascual N, Piulachs M-D, Keller T, Bélles X (2006) Juvenile hormone titer versus juvenile hormone synthesis in female nymphs and adults of the German cockroach (Blattella germanica). J Insect Sci 6:43

    Article  PubMed Central  Google Scholar 

  • Tsuchiya M, Watanabe D, Maekawa K (2008) Effect on mandibular length of juvenile hormones and regulation of soldier differentiation in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Appl Entomol Zool 43:307–314

    Article  Google Scholar 

  • Tu M-P, Yin C-M, Tatar M (2005) Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 142:347–356

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Shinoda T, Hiruma K (2009) Spatial expression of the mevalonate enzymes involved in juvenile hormone biosynthesis in the corpora allata in Bombyx mori. J Insect Physiol 55:798–804

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed Central  PubMed  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: research0034

  • Watanabe D, Maekawa K (2012) Relationships between frontal-gland formation and mandibular modification during JH III-induced presoldier differentiation in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Entomol Sci 15:56–62

    Article  Google Scholar 

  • Watanabe D, Gotoh H, Miura T, Maekawa K (2011) Soldier presence suppresses presoldier differentiation through a rapid decrease of JH in the termite Reticulitermes speratus. J Insect Physiol 57:791–795

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Gotoh H, Miura T, Maekawa K (2014) Social interactions affecting caste development through physiological actions in termites. Front Physiol 5:127

    Article  PubMed Central  PubMed  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1(6): reviews3003.1–3009.9

  • Wilson EO (2000) Sociobiology: the new synthesis, Twenty-fifth anniversary. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

We are grateful to Toru Miura and Hiroki Gotoh (Hokkaido University) for advice on and use of the HPLC–MS system. We also thank Ryota Saiki, Shutaro Hanmoto, Souichiro Kawamura and Ryutaro Suzuki (University of Toyama) for help during both the field and laboratory work. This study was supported in part by Grants-in-Aid for Scientific Research (nos. 24570022 and 25128705 to KM) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoto Maekawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaguchi, H., Masuoka, Y., Inoue, T. et al. Expressions of juvenile hormone biosynthetic genes during presoldier differentiation in the incipient colony of Zootermopsis nevadensis (Isoptera: Archotermopsidae). Appl Entomol Zool 50, 497–508 (2015). https://doi.org/10.1007/s13355-015-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-015-0358-3

Keywords

Navigation