Skip to main content
Log in

Statistical estimation of high-resolution surface air temperature from MODIS over the Yangtze River Delta, China

  • Special Collection in Commemoration of Shaowu Wang
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

High-resolution surface air temperature data are critical to regional climate modeling in terms of energy balance, urban climate change, and so on. This study demonstrates the feasibility of using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) to estimate air temperature at a high resolution over the Yangtze River Delta region, China. It is found that daytime LST is highly correlated with maximum air temperature, and the linear regression coefficients vary with the type of land surface. The air temperature at a resolution of 1 km is estimated from the MODIS LST with linear regression models. The estimated air temperature shows a clear spatial structure of urban heat islands. Spatial patterns of LST and air temperature differences are detected, indicating maximum differences over urban and forest regions during summer. Validations are performed with independent data samples, demonstrating that the mean absolute error of the estimated air temperature is approximately 2.5°C, and the uncertainty is about 3.1°C, if using all valid LST data. The error is reduced by 0.4°C (15%) if using best-quality LST with errors of less than 1 K. The estimated high-resolution air temperature data have great potential to be used in validating high-resolution climate models and other regional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Colombi, A., C. De Michele, M. Pepe, et al., 2007: Estimation of daily mean air temperature from MODIS LST in Alpine areas. EARSeL eProceedings, 6, 38–46.

    Google Scholar 

  • Connor, S. J., M. C. Thomson, S. P. Flasse, et al., 1998: Environmental information systems in malaria risk mapping and epidemic forecasting. Disasters, 22, 39–56, doi: 10.1111/1467-7717.00074.

    Article  Google Scholar 

  • Cresswell, M. P., A. P. Morse, M. C. Thomson, et al., 1999: Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int. J. Remote Sens., 20, 1125–1132, doi: 10.1080/0143 11699212885.

    Article  Google Scholar 

  • Czajkowski, K. P., S. N. Goward, S. J. Stadler, et al., 2000: Thermal remote sensing of near surface environmental variables: Application over the Oklahoma mesonet. The Professional Geographer, 52, 345–357, doi: 10.1111/0033-0124. 00230.

    Article  Google Scholar 

  • Foley, J. A., R. De Fries, G. P. Asner, et al., 2005: Global consequences of land use. Science, 309, 570–574, doi: 10.1126/science.1111772.

    Article  Google Scholar 

  • Han, X. Z., S. M. Li, and F. L. Dou, 2012: Study of obtaining high resolution near-surface atmosphere temperature by using the land surface temperature from meteorological satellite data. Acta Meteor. Sinica, 70, 1107–1118, doi: 10.11676/qxxb 2012.093. (in Chinese)

    Google Scholar 

  • Kusaka, H., F. Chen, M. Tewari, et al., 2012: Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteor. Soc. Japan, 90B, 33–45, doi: 10.2151/jmsj.2012-B03.

    Article  Google Scholar 

  • Li, J., and A. D. Heap, 2008: A review of spatial interpolation methods for environmental scientists. Record-Geoscience Australia, 23, 137.

    Google Scholar 

  • Mostovoy, G. V., R. L. King, K. R. Reddy, et al., 2006: Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GISci. Remote Sens., 43, 78–110, doi: 10.2747/1548-1603.43.1.78.

    Article  Google Scholar 

  • Pan, X. D., and X. Li, 2011: Validation of WRF model on simulating forcing data for Heihe River basin. Sciences in Cold and Arid Regions, 3, 344–357, doi: 10.3724/SP.J.1226.2011.00344.

    Google Scholar 

  • Prihodko, L., and S. N. Goward, 1997: Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ., 60, 335–346, doi: 10.1016/S0034-4257(96)00216-7.

    Article  Google Scholar 

  • Qi, S. H., C. F. Luo, C. Y. Wang, et al., 2006: Pre-study on reverse air temperature from remote sensing: Relationship between vegetation index, land surface temperature and air temperature. Remote Sens. Tech. Appl., 21, 130–136, doi: 10.11873/j.issn.1004-0323.2006.2.130. (in Chinese)

    Google Scholar 

  • Shen, S. H., and G. G. Leptoukh, 2011: Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ. Res. Lett., 6, 045206, doi: 10.1088/1748-9326/6/4/045206.

    Article  Google Scholar 

  • Strahler, A., D. Muchoney, J. Borak, et al., 1999: MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD), Version 5.0. Center for Remote Sensing, Department of Geography, Boston University, Boston, MA, USA. Available online at https://modis.gsfc.nasa.gov/data/atbd/atbd_mod12. pdf, accessed on March 10, 2017, 72 pp.

    Google Scholar 

  • Wan, Z. M., 1999: MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD). Institute for Computational Earth System Science, Santa Barbara, CA, USA. 75 pp.

    Google Scholar 

  • Wan, Z. M., 2006: MODIS Land Surface Temperature Products Users’ Guide. Institute for Computational Earth System Science, University of California, Santa Barbara, CA, USA Available online at http://www.icess.ucsb.edu/modis/LstUsr-Guide/MODIS_LST_products_Users_guide_C5.pdf, accessed on March 10, 2017, 30 pp.

    Google Scholar 

  • Wan, Z. M., and Z.-L. Li, 2008: Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens., 29, 5373–5395, doi: 10.1080/01431160802036565.

    Article  Google Scholar 

  • Wan, Z. M., Y. L. Zhang, Q. C. Zhang, et al., 2004: Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens., 25, 264–274, doi: 10.1080/0143116031000116417.

    Google Scholar 

  • Xu, W. H., Q. X. Li, X. L. Wang, et al., 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res., 118, 9708–9720, doi: 10.1002/jgrd.50791.

    Google Scholar 

  • Xu, W. Y., R. Sun, Z. F. Jin, et al., 2015: Estimation of near surface air temperature based on MODIS data. Meteor. Environ. Sci., 38, 1–6, doi: 10.16765/j.cnki.1673-7148.2015.01.001. (in Chinese)

    Google Scholar 

  • Zhang, W., Y. Huang, Y. Q. Yu, et al, 2011: Empirical models for estimating daily maximum, minimum, and mean air temperatures with MODIS land surface temperatures. Int. J. Remote Sens., 32, 9415–9440, doi: 10.1080/01431161.2011.560622.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Monsoon Asia Integrated Regional Study (MAIRS) project and Giovanni system at NASA GES DISC (Goddard Earth Sciences Data and Information Servies Center) for their data exploration of MODIS high resolution land surface temperatures and other land products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Jiang.

Additional information

Supported by the National Natural Science Foundation of China (41230528), National (Key) Basic Research and Development (973) Program of China (2010CB428505), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Jiang, Z., Dong, L. et al. Statistical estimation of high-resolution surface air temperature from MODIS over the Yangtze River Delta, China. J Meteorol Res 31, 448–454 (2017). https://doi.org/10.1007/s13351-017-6073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6073-y

Key words

Navigation