Skip to main content

Advertisement

Log in

Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  PubMed  Google Scholar 

  2. Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol. 2005;50:167–82.

    Article  PubMed  Google Scholar 

  3. Szoka F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes. Annu Rev Biophys Bioeng. 1980;9:467–508.

    Article  CAS  PubMed  Google Scholar 

  4. Addo RT, Siddig A, Siwale R, Patel NJ, Akande J, Uddin AN, D'Souza MJ. Formulation, characterization and testing of tetracaine hydrochloride-loaded albumin-chitosan microparticles for ocular drug delivery. J Microencapsul. 2010;27:95–104.

    Article  CAS  PubMed  Google Scholar 

  5. Sensoy D, Cevher E, Sarici A, Yilmaz M, Ozdamar A, Bergisadi N. Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur J Pharm Biopharm. 2009;72:487–95.

    Article  CAS  PubMed  Google Scholar 

  6. Choy YBPJH, Prausnitz MR. Mucoadhesive microparticles engineered for ophthalmic drug delivery. J Phys Chem Solids. 2008;69:1533–6.

    Article  CAS  Google Scholar 

  7. Choy YB, Park JH, McCarey BE, Edelhauser HF, Prausnitz MR. Mucoadhesive microdiscs engineered for ophthalmic drug delivery: effect of particle geometry and formulation on preocular residence time. Invest Ophthalmol Vis Sci. 2008;49:4808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park CG, Kim YK, Kim MJ, et al. Mucoadhesive microparticles with a nanostructured surface for enhanced bioavailability of glaucoma drug. J Control Release. 2015;220:180–8.

    Article  CAS  PubMed  Google Scholar 

  9. Vega E, Egea MA, Valls O, Espina M, García ML. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J Pharm Sci. 2006;95:2393–405.

    Article  CAS  PubMed  Google Scholar 

  10. Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R, Cyclosporine A. Delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56:307–18.

    Article  CAS  PubMed  Google Scholar 

  11. Chaiyasan W, Srinivas SP, Tiyaboonchai W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis. 2015;21:1224–34.

    PubMed  PubMed Central  Google Scholar 

  12. Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie. 2011;66:594–9.

    CAS  PubMed  Google Scholar 

  13. Liu Z, Zhang X, Wu H, et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm. 2011;37:475–81.

    Article  PubMed  CAS  Google Scholar 

  14. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238:241–5.

    Article  CAS  PubMed  Google Scholar 

  15. Li R, Jiang S, Liu D, et al. A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. J Microencapsul. 2011;28:134–41.

    Article  CAS  PubMed  Google Scholar 

  16. Hao J, Wang X, Bi Y, et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Despanie J, Shi P, et al. Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. J Mater Chem B Mater Biol Med. 2014;2:8131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kao HJ, Lin HR, Lo YL, Characterization YSP. Of pilocarpine-loaded chitosan/carbopol nanoparticles. J Pharm Pharmacol. 2006;58:179–86.

    Article  CAS  PubMed  Google Scholar 

  19. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target. 2010;18:292–302.

    Article  CAS  PubMed  Google Scholar 

  20. Gökçe EH, Sandri G, Eğrilmez S, Bonferoni MC, Güneri T, Caramella C. Cyclosporine a-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34:996–1003.

    Article  PubMed  CAS  Google Scholar 

  21. Başaran E, Yenilmez E, Berkman MS, Büyükköroğlu G, Yazan Y. Chitosan nanoparticles for ocular delivery of cyclosporine A. J Microencapsul. 2014;31:49–57.

    Article  PubMed  CAS  Google Scholar 

  22. Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78:379–88.

    Article  CAS  PubMed  Google Scholar 

  23. Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci. 1982;22:220–7.

    CAS  PubMed  Google Scholar 

  24. Law SLHH. Properties of acyclovir-containing liposomes for potential ocular delivery. Int J Pharm. 1999;161:253–9.

    Article  Google Scholar 

  25. Chetoni PRS, Burgalassi S, Monti D, Mariotti S, Saettone MF. Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. J Ocul Pharmacol Ther. 2004;20:169–77.

    Article  CAS  PubMed  Google Scholar 

  26. El-Gazayerly ON, Hikal AH. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158:121–7.

    Article  CAS  Google Scholar 

  27. Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies. AAPS Pharm Sci Tech. 2016;17(3):710–7.

    Article  CAS  Google Scholar 

  28. Chetoni P, Monti D, Tampucci S, et al. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm. 2015;492:120–6.

    Article  CAS  PubMed  Google Scholar 

  29. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res. 1998;17:33–58.

    Article  CAS  Google Scholar 

  30. Budai L, Hajdu M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm. 2007;343:34–40.

    Article  CAS  PubMed  Google Scholar 

  31. Greaves JL, Wilson CG. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev. 1993;11:349–83.

    Article  CAS  Google Scholar 

  32. Wilson CGZY, Frier M, Rao LS, Gilchrist P, Perkins AC. Ocular contact time of a carbomer gel (GelTears) in humans. Br J Ophthalmol. 1998;82:1131–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57:1595–639.

    Article  CAS  PubMed  Google Scholar 

  34. Hosny K. Ciprofloxacin as ocular liposomal hydrogel. AAPS Pharm Sci Tech. 2010;11:241–6.

    Article  CAS  Google Scholar 

  35. Hosny K. Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS Pharm Sci Tech. 2009;10:1336–42.

    Article  CAS  Google Scholar 

  36. Pleyer UEB, Rückert D, Lutz S, Grammer J, Chou J, Schmidt KH, Mondino BJ. Ocular absorption of cyclosporine A from liposomes incorporated into collagen shields. Curr Eye Res. 1994;13:177–81.

    Article  CAS  PubMed  Google Scholar 

  37. Quinteros D, Vicario-de-la-Torre M, Andres-Guerrero V, et al. Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One. 2014;9:e110344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Broadway DC, Grierson I, O'Brien C, Hitchings RA. Adverse effects of topical antiglaucoma medication. I. The conjunctival cell profile. Arch Ophthalmol. 1994;112:1437–45.

    Article  CAS  PubMed  Google Scholar 

  39. Schwab IR, Linberg JV, Gioia VM, Benson WH, Chao GM. Foreshortening of the inferior conjunctival fornix associated with chronic glaucoma medications. Ophthalmology. 1992;99:197–202.

    Article  CAS  PubMed  Google Scholar 

  40. Nuzzi R, Vercelli A, Finazzo C, Cracco C. Conjunctiva and subconjunctival tissue in primary open-angle glaucoma after long-term topical treatment: an immunohistochemical and ultrastructural study. Graefes Arch Clin Exp Ophthalmol. 1995;233:154–62.

    Article  CAS  PubMed  Google Scholar 

  41. Dong Y, Dong P, Huang D, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82–90.

    Article  CAS  PubMed  Google Scholar 

  42. Klang SH, Frucht-Pery J, Hoffman A, Benita S. Physicochemical characterization and acute toxicity evaluation of a positively-charged submicron emulsion vehicle. J Pharm Pharmacol. 1994;46:986–93.

    Article  CAS  PubMed  Google Scholar 

  43. Li CC, Abrahamson M, Kapoor Y, Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J Colloid Interface Sci. 2007;315:297–306.

    Article  CAS  PubMed  Google Scholar 

  44. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45:89–121.

    Article  CAS  PubMed  Google Scholar 

  45. Chan J, Maghraby GM, Craig JP, Alany RG. Effect of water-in-oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits. Clin Ophthalmol. 2008;2:129–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chan J, El Maghraby G, Craig JP, Alany RG. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int J Pharm. 2007;328:65–71.

    Article  CAS  PubMed  Google Scholar 

  47. Alany RG, Rades T, Nicoll J, Tucker IG, Davies NMW. O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release. 2006;111:145–52.

    Article  CAS  PubMed  Google Scholar 

  48. Aggarwal D, Garg A, Kaur IP. Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. J Pharm Pharmacol. 2004;56:1509–17.

    Article  CAS  PubMed  Google Scholar 

  49. Kaur IP, Aggarwal D, Singh H, Kakkar S. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefe's Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2010;248:1467–72.

    Article  CAS  Google Scholar 

  50. Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci. 2011;100:1833–46.

    Article  CAS  PubMed  Google Scholar 

  51. Abdelkader H, Ismail S, Hussein A, Wu Z, Al-Kassas R, Alany RG. Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen's egg chorioallantoic membrane and excised bovine cornea models. Int J Pharm. 2012;432:1–10.

    Article  CAS  PubMed  Google Scholar 

  52. Abdelkader H, Wu Z, Al-Kassas R, Alany RG. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharm. 2012;433(1–2):142–8.

    Article  CAS  PubMed  Google Scholar 

  53. Li Q, Li Z, Zeng W, et al. Proniosome-derived niosomes for tacrolimus topical ocular delivery: in vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur J Pharm Sci. 2014;62:115–23.

    Article  CAS  PubMed  Google Scholar 

  54. Abu Hashim II, El-Dahan MS, Yusif RM, Abd-Elgawad AE, Arima H. Potential use of niosomal hydrogel as an ocular delivery system for atenolol. Biol Pharm Bull. 2014;37:541–51.

    Article  CAS  PubMed  Google Scholar 

  55. Aulenta F, Hayes W, Rannard S. Dendrimers: a new class of nanoscopic containers and delivery devices. Eur Polym J. 2003;39:1741–71.

    Article  CAS  Google Scholar 

  56. Sultana Y, Maurya DP, Iqbal Z, Aqil M. Nanotechnology in ocular delivery: current and future directions. Drugs Today (Barc). 2011;47:441–55.

    Article  CAS  Google Scholar 

  57. Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release : Off J Control Release Soc. 2005;102:23–38.

    Article  CAS  Google Scholar 

  58. Bravo-Osuna I, Noiray M, Briand E, et al. Interfacial interaction between transmembrane ocular mucins and adhesive polymers and dendrimers analyzed by surface plasmon resonance. Pharm Res. 2012;29:2329–40.

    Article  CAS  PubMed  Google Scholar 

  59. Yao W, Sun K, Mu H, et al. Preparation and characterization of puerarin-dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm. 2010;36:1027–35.

    Article  CAS  PubMed  Google Scholar 

  60. Yao WJ, Sun KX, Liu Y, et al. Effect of poly(amidoamine) dendrimers on corneal penetration of puerarin. Biol Pharm Bull. 2010;33:1371–7.

    Article  CAS  PubMed  Google Scholar 

  61. Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine : Nanotechnol Biol Med. 2012;8:776–83.

    CAS  Google Scholar 

  62. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6:7595–606.

    Article  CAS  PubMed  Google Scholar 

  63. Spataro G, Malecaze F, Turrin CO, et al. Designing dendrimers for ocular drug delivery. Eur J Med Chem. 2010;45:326–34.

    Article  CAS  PubMed  Google Scholar 

  64. Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest Ophthalmol Vis Sci. 2010;51:5804–16.

    Article  PubMed  Google Scholar 

  65. Durairaj CKU. Dendritic polyguanidilyated translocators for ocular drug delivery. Drug Deliv Technol. 2009;9:36–43.

    CAS  Google Scholar 

  66. Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461:380–90.

    Article  CAS  PubMed  Google Scholar 

  67. Agrawal AK, Das M, Jain S. situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012;9(4):383–402.

    Article  CAS  PubMed  Google Scholar 

  68. Rupenthal ID, Green C, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. In J Pharm. 2011;411:69–71.

    CAS  Google Scholar 

  69. Rupenthal ID, Alany RG, Green CR. Ion activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol Pharmaceutics 2011;8:2282–90.

  70. Herrero-Vanrell R, Refojo MJ. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52:5–16.

    Article  CAS  PubMed  Google Scholar 

  71. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5–6):270–7.

    Article  CAS  PubMed  Google Scholar 

  72. Braga-Mele R, Chang DF, Henderson N, Mamalis N, Talley-Rostov A, Vasavada A. Intracameral antibiotics: safety, efficacy and preparation. J Cataract Refract Surg. 2014;40:2134–42.

    Article  PubMed  Google Scholar 

  73. Kim YC, Chiang B, Wu X, Prausnitz MR. Drug delivery of macromolecules. J Control Release. 2014;40:2134–42.

    Google Scholar 

  74. Checa-Casalengua P, Jiang C, Bravo-Osuna I, et al. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release: Off J Control Release Soc. 2011;156:92–100.

    Article  CAS  Google Scholar 

  75. Robinson R, Viviano SR, Criscione JM, et al. Nanospheres delivering the EGFR TKI AG1478 promote optic nerve regeneration: the role of size for intraocular drug delivery. ACS Nano. 2011;5:4392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshida T, Gong J, Xu Z, Wei Y, Duh EJ. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac. Exp Eye Res. 2012;94:41–8.

    Article  CAS  PubMed  Google Scholar 

  77. Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J. 2010;24:1178–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Veloso Jr AA, Zhu Q, Herrero-Vanrell R, Refojo MF. Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Invest Ophthalmol Vis Sci. 1997;38:665–75.

  79. Herrero-Vanrell R, Bravo-Osuna I, Andrés-Guerrero V, Vicario-de-la-Torre M, Molina-Martínez IT. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog Retin Eye Res. 2014;42:27–43.

    Article  CAS  PubMed  Google Scholar 

  80. Yasukawa T, Tabata Y, Kimura H, Ogura Y. Recent advances in intraocular drug delivery systems. Recent Pat Drug Deliv Formul. 2011;5:1–10.

    Article  CAS  PubMed  Google Scholar 

  81. Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci. 1991;32:1785–90.

    CAS  PubMed  Google Scholar 

  82. Moritera T, Ogura Y, Yoshimura N, et al. Biodegradable microspheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1992;33:3125–30.

    CAS  PubMed  Google Scholar 

  83. Conti B, Bucolo C, Giannavola C, Puglisi G, Giunchedi P, Conte U. Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. Eur J Pharm Sci. 1997;5:287–93.

    Article  CAS  Google Scholar 

  84. Duvvuri S, Janoria KG, Pal D, Mitra AK. Controlled delivery of ganciclovir to the retina with drug-loaded poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther. 2007;23:264–74.

    Article  CAS  PubMed  Google Scholar 

  85. He Y, Liu Y, Liu Y, et al. Cyclosporine-loaded microspheres for treatment of uveitis: in vitro characterization and in vivo pharmacokinetic study. Invest Ophthalmol Vis Sci. 2006;47:3983–8.

    Article  PubMed  Google Scholar 

  86. Barcia E, Herrero-Vanrell R, Diez A, Alvarez-Santiago C, Lopez I, Calonge M. Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res. 2009;89:238–45.

    Article  CAS  PubMed  Google Scholar 

  87. Cardillo JA, Souza-Filho AA, Oliveira AG. Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Archivos de la Sociedad Espanola de Oftalmologia. 2006;81:675–7 679-681.

    CAS  PubMed  Google Scholar 

  88. Andrieu-Soler C, Aubert-Pouessel A, Doat M, et al. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse. Mol Vis. 2005;11:1002–11.

    CAS  PubMed  Google Scholar 

  89. Ward MS, Khoobehi A, Lavik EB, Langer R, Young MJ. Neuroprotection of retinal ganglion cells in DBA/2 J mice with GDNF-loaded biodegradable microspheres. J Pharm Sci. 2007;96:558–68.

    Article  CAS  PubMed  Google Scholar 

  90. Gaddipati S, Lu Q, Kasetti RB, et al. IKK2 inhibition using TPCA-1-loaded PLGA microparticles attenuates laser-induced choroidal neovascularization and macrophage recruitment. PLoS One. 2015;10:e0121185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhang L, Si T, Fischer AJ, et al. Coaxial electrospray of ranibizumab-loaded microparticles for sustained release of anti-VEGF therapies. PLoS One. 2015;10:e0135608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Herrero-Vanrell R, Fernandez-Sanchez L, Puebla-Gonzalez M, Lax P, Bravo-Osuna I, Cuenca N. Encapsulated TUDCA PLGA microspheres for the treatment of retinitis pigmentosa. Invest Ophthalmol Vis Sci Annual Meeting. Forth Lauderdale, FL, USA; 2011.

  93. Park K, Chen Y, Hu Y, et al. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes. 2009;58:1902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One. 2006;1:e38.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cai X, Nash Z, Conley SM, Fliesler SJ, Cooper MJ, Naash MIA. partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS One. 2009;4:e5290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mitra RN, Han Z, Merwin M, Al Taai M, Conley SM, Naash MI. Synthesis and characterization of glycol chitosan DNA nanoparticles for retinal gene delivery. Chem. Med Chem. 2014;9:189–96.

    CAS  Google Scholar 

  97. Chen Y-S, Green CR, Wang K, Danesh-Meyer HV, Rupenthal ID. Sustained intravitreal delivery of connexin43 mimetic peptide by poly(d,l-lactide-co-glycolide) acid micro- and nanoparticles—closing the gap in retinal ischaemia. Eur J Pharm Biopharm. 2015;95(Part B):378–86.

    Article  PubMed  CAS  Google Scholar 

  98. Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012;161(2):628–34.

    Article  CAS  PubMed  Google Scholar 

  99. Cannon JP, Fiscella R, Pattharachayakul S, et al. Comparative toxicity and concentrations of intravitreal amphotericin B formulations in a rabbit model. Invest Ophthalmol Vis Sci. 2003;44:2112–7.

    Article  PubMed  Google Scholar 

  100. Liu KR, Peyman GA, Khoobehi B. Efficacy of liposome-bound amphotericin B for the treatment of experimental fungal endophthalmitis in rabbits. Invest Ophthalmol Vis Sci. 1989;30:1527–34.

    CAS  PubMed  Google Scholar 

  101. Cheng LHK, Chaidhawangul S, Gardner MF, Beadle JR, Keefe KS, Bergeron-Lynn G, Severson GM, Soules KA, Mueller AJ, Freeman WR. Intravitreal toxicology and duration of efficacy of a novel antiviral lipid prodrug of ganciclovir in liposome formulation. Invest Ophthalmol Vis Sci. 2000;41:1523–32.

    CAS  PubMed  Google Scholar 

  102. Peeters LSN, Braeckmans K, Boussery K, Van de Voorde J, De Smedt SC, Demeester J. Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci. 2005;46:3553–61.

    Article  PubMed  Google Scholar 

  103. Bochot A, Fattal E, Boutet V, Deverre JR, Jeanny JC, Chacun H, Couvreur P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci. 2002;43(1):253–9.

    PubMed  Google Scholar 

  104. Lajavardi L, Camelo S, Agnely F, et al. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release. 2009;139:22–30.

    Article  CAS  PubMed  Google Scholar 

  105. Asteriti S, Dal Cortivo G, Pontelli V, Cangiano L, Buffelli M, Dell'Orco D. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles. Biochem Biophys Res Commun. 2015;461:665–70.

    Article  CAS  PubMed  Google Scholar 

  106. Wimmer N, Marano RJ, Kearns PS, Rakoczy EP, Toth I. Syntheses of polycationic dendrimers on lipophilic peptide core for complexation and transport of oligonucleotides. Bioorg Med Chem Lett. 2002;12:2635–7.

    Article  CAS  PubMed  Google Scholar 

  107. Marano RJ, Wimmer N, Kearns PS, et al. Inhibition of in vitro VEGF expression and choroidal neovascularization by synthetic dendrimer peptide mediated delivery of a sense oligonucleotide. Exp Eye Res. 2004;79:525–35.

    Article  CAS  PubMed  Google Scholar 

  108. Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther. 2005;12:1544–50.

    Article  CAS  PubMed  Google Scholar 

  109. Parekh HS, Marano RJ, Rakoczy EP, Blanchfield J, Toth I. Synthesis of a library of polycationic lipid core dendrimers and their evaluation in the delivery of an oligonucleotide with hVEGF inhibition. Bioorg Med Chem. 2006;14:4775–80.

    Article  CAS  PubMed  Google Scholar 

  110. Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33:979–88.

    Article  CAS  PubMed  Google Scholar 

  111. Kambhampati SP, Mishra MK, Mastorakos P. Oh Y, Lutty GA, Kannan RM. intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur J Pharm Biopharm. 2015;95:239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hennig R, Veser A, Kirchhof S, Goepferich A. Branched polymer-drug conjugates for multivalent blockade of angiotensin II receptors. Mol Pharmaceutics 2015;12:3292–302.

  113. Geronski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41(5):961–4.

    Google Scholar 

  114. Geronski DH, Edelhauser HF. Transcleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.

    Article  Google Scholar 

  115. Ambati J, Adamis AP. Transcleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  116. Diebold Y, Jarrín M, Sáez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP. Biomaterials. 2007;28:1553–64.

    Article  CAS  PubMed  Google Scholar 

  117. Rai UDJP, Pierscionek B, Alany RG. The suprachoroidal pathway: a new drug delivery route to the back of the eye. Drug Discov Today. 2015;20(4):491–5.

    Article  CAS  Google Scholar 

  118. Kothuri MK, Pinnamaneni S, Das NG, Das SK. Microparticles and nanoparticles in ocular drug delivery. In: Dekker M (ed), Ophthalmic drug delivery systems. New York; 2003:437–466.

  119. Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57:1555–63.

    Article  CAS  PubMed  Google Scholar 

  120. Kompella U, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci. 2003;44:1192–201.

    Article  PubMed  Google Scholar 

  121. Ayalasomayajula S, Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol. 2005;511:191–8.

    Article  CAS  PubMed  Google Scholar 

  122. Amrite A, Ayalasomayajula SP, Cheruvu NP, Kompella UB. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci. 2006;47:1149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kimura H, Ogura Y, Moritera T, Honda Y, Wada R, Hyon SH, Ikada Y. Injectable microspheres with controlled drug release for glaucoma filtering surgery. Invest Ophthalmol Vis Sci. 1992;33:3436–41.

    CAS  PubMed  Google Scholar 

  124. Gomes dos Santos A, Bochot A, Doyle A, Tsapis N, Siepmann J, Siepmann F, Schmaler J, Besnard M, Behar-Cohen F, Fattal E. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. Journal of controlled release : official journal of the Controlled Release Society. 2006;112:369–81.

    Article  CAS  Google Scholar 

  125. Saishin Y, Silva RL, Saishin Y, et al. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci. 2003;44:4989–93.

    Article  PubMed  Google Scholar 

  126. Carrasquillo KG, Riker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest Ophthalmol Vis Sci. 2003;44(1):290–9.

    Article  PubMed  Google Scholar 

  127. Paganelli FCJ, Melo Jr LA, Lucena DR, Silva Jr AA, Oliveira AG, Höfling-Lima AL, Nguyen QD, Kuppermann BD, Belfort Jr R. A single intraoperative sub-tenon's capsule injection of triamcinolone and ciprofloxacin in a controlled-release system for cataract surgery. Invest Ophthalmol Vis Sci. 2009;50:3041–7.

  128. Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53:4433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim YC, KH O, Edelhauser HF, Prausnitz MR. Formulation to target delivery to the ciliary body and choroid via the suprachoroidal space of the eye using microneedles. Eur J Pharm Biopharm. 2015;95:398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Irani YD, Tian Y, Wang M, et al. A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye. Exp Eye Res. 2015;139:123–31.

    Article  CAS  PubMed  Google Scholar 

  131. Amrite A, Kompella U. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57:1555–63.

    Article  CAS  PubMed  Google Scholar 

  132. Kalita D, Shome D, Jain VG, Chadha K, Bellare JR. vivo intraocular distribution and safety of periocular nanoparticle carboplatin for treatment of advanced retinoblastoma in humans. Am J Ophthalmol. 2014;157:1109–15.

    Article  CAS  PubMed  Google Scholar 

  133. Feng L, Li SK, Liu CY, Lasance K, Hanque F, Shu D, Guo P. Ocular delivery of PRNA nanoparticles: distribution and clearance after subconjunctival injection. Pharm Res. 2014;31:1046–58.

    Article  CAS  PubMed  Google Scholar 

  134. Cortesi R, Argani R, Esposito E, Dalpiaz A, Scatturin A, Bortolotti F, Lufino M, Guerrini R, Cavicchioni G, Incorvaia E, Menegatti E, Manservigi R. Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. Int J Pharm. 2006;317:90–100.

    Article  CAS  PubMed  Google Scholar 

  135. Ding S. Recent developments in ophthalmic drug delivery. Pharma Sci Technol Today. 1998;1:328–35.

    Article  CAS  Google Scholar 

  136. Elsaid N, Somavarapu S, Jackson TL. Cholesterol-poly(ethylene) glycol nanocarriers for the transscleral delivery of sirolimus. Exp Eye Res. 2014;121:121–9.

    Article  CAS  PubMed  Google Scholar 

  137. Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol. 2004;22:977–84.

    Article  CAS  PubMed  Google Scholar 

  138. Kang SJ, Durairaj C, Kompella UB, O'Brien JM, Grossniklaus HE. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch Ophthalmol. 2009;127:1043–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. www.santen.eu/eu/products/dryeye/Pages/cationorm.aspx (cited 16 August 2016)

  140. www.medicines.org.uk/emc/medicine/30584 (cited 16 August 2016)

  141. www.alimerasciences.com/products/iluvien-for-diabetic-macular-edema-dme/ (cited 16 August 2016)

  142. www.ozurdex.com/ (cited 16 August 2016)

  143. www.allergan.com/assets/pdf/restasis_pi.pdf (cited 16 August 2016)

  144. www.retisert.com/ (cited 16 August 2016)

  145. http://biorevive.com/product/tears-again-spray/ (cited 16 August 2016)

  146. http://www.bausch.com/portals/77/-/m/BL/United%20States/Files/MSDS/vitrasert.pdf (cited 16 August 2016)

  147. Herrero-Vanrell R, Vicario de la Torre M, Andrés-Guerrero V, Barbosa-Alfaro D, Molina-Martínez IT, Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Del Sci Tech. 2013;23(2):75–102.

    Article  CAS  Google Scholar 

  148. Vicario-de-la-Torre M, Benítez-del-Castillo JM, Vico E, Guzmán M, de-Las-Heras B, Herrero-Vanrell R, Molina-Martínez IT. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Invest Ophthalmol Vis Sci. 2014;55(12):7839–47.

    Article  CAS  PubMed  Google Scholar 

  149. Yandrapu SK, Upadhyay UK, Petrash JM, Kompella UB. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm. 2016;10(12):4676–86.

    Article  CAS  Google Scholar 

  150. Lavinsky D, Cardillo JA, Lima Filho AAS, Costa R, Silva Jurnior AA, Belfort R, Oliveira AG. Phase I/II study of intravitreal triamcinolone acetonide microspheres for treatment of diffuse diabetic macular edema unresponsive to conventional laser photocoagulation treatment. Invest Ophthalmol Vis Sci 2008;49:e-abstract:2698.

  151. Allergan Limited. A Multicenter, patient-masked, safety extension study to evaluate the biodegradation of the brimonidine tartrate posterior segment drug delivery system, in: clinicaltrialsregister.eu, 2010, EudraCT: 2010–019079-32 (cited 16 August 2016).

  152. Santen Pharmaceutical. Efficacy and safety of betamethasone microsphere in patients with macular edema following branch retinal vein occlusion (HIKARI), in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2012, https://clinicaltrials.gov/ct2/show/NCT01512901 (cited 16 August 2016).

  153. Ohira A, Hara K, Jóhannesson G, Tanito M, Asgrímsdóttir GM, Lund SH, Loftsson T, Stefánsson E. Topical dexamethasone γ-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 2015;93(7):610–5.

    Article  CAS  PubMed  Google Scholar 

  154. Shulman S, Jóhannesson G, Stefánsson E, Loewenstein A, Rosenblatt A, Habot-Wilner Z. Topical dexamethasone-cyclodextrin nanoparticle eye drops for non-infectious Uveitic macular oedema and vitritis—a pilot study. Acta Ophthalmol. 2015;93(5):411–5.

    Article  CAS  PubMed  Google Scholar 

  155. Tanito M, Hara K, Takai Y, Matsuoka Y, Nishimura N, Jansook P, Loftsson T, Stefánsson E, Ohira A. Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(11):7944–8.

    Article  CAS  PubMed  Google Scholar 

  156. Mati Therapeutics Inc. A phase 2 study of the latanoprost punctal plug delivery system in subjects with ocular hypertension or open-angle glaucoma, in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2013, https://clinicaltrials.gov/ct2/show/NCT00855517 (cited 16 August 2016).

  157. Pfizer. Safety study of latanoprost slow release insert (latanoprost SR), in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2014, https://clinicaltrials.gov/ct2/show/NCT01180062 (cited 16 August 2016).

  158. Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, Semba CP. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016;S0161–6420:30203–2.

  159. ViSci Ltd. Phase 1/2 multicenter, randomized, study to evaluate the safety and efficacy of VS101 subconjunctival latanoprost insert in subjects with open-angle glaucoma or ocular hypertension, in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2014, https://clinicaltrials.gov/ct2/show/NCT02129673 (cited 16 August 2016).

  160. Envisia Therapeutics. Safety and efficacy of ENV515 travoprost extended release (XR) in patients with bilateral ocular hypertension or primary open angle glaucoma, in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2015, https://clinicaltrials.gov/ct2/show/NCT02371746 (cited 16 August 2016).

  161. Allergan. Safety and efficacy of bimatoprost sustained-release (SR) in patients with open-angle glaucoma or ocular hypertension, in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2016, https://clinicaltrials.gov/ct2/show/NCT02250651 (cited 16 August 2016).

  162. Taiwan Liposome Company. Phase I/II trial to find maximum tolerated dose (MTD) and dose limiting toxicities (DLT) of TLC399 (ProDex) in patients with macular edema due to retinal vein occlusion (RVO), in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2016, https://clinicaltrials.gov/ct2/show/NCT02006147 (cited 16 August 2016).

  163. Walters T, Endl M, Elmer TR, Levenson J, Majmudar P, Masket S. Sustained-release dexamethasone for the treatment of ocular inflammation and pain after cataract surgery. J Cataract Refract Surg. 2015;41(10):2049–59.

    Article  PubMed  Google Scholar 

  164. Ocular Therapeutix. Phase 2b study evaluating safety and efficacy of OTX-TP compared to timolol drops in the treatment of subjects with open angle glaucoma or ocular hypertension, in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2016, https://clinicaltrials.gov/ct2/show/NCT02312544 (cited 16 August 2016).

  165. Kala Pharmaceutics. Safety and efficacy of KPI-121 in subjects with postsurgical inflammation (Hawaii-1), in: ClinicalTrials.gov, National Library of Medicine (USA), Bethesda (MD), 2016, https://clinicaltrials.gov/ct2/show/NCT02163824 (cited 16 August 2016).

Download references

Acknowledgments

The authors thank ISCIII-FEDER Red Temática de Investigación Cooperativa en Oftalmología RETICS (Oftared) RD12/0034/0003 and RD12/0034/0014, Complutense Research Group UCM 920415-GR3/14, Spanish Ministry of Economy and Competitiveness MICINN-MAT 2013–43127R, and Spanish Ministry of Health and Consumption. This study was funded by Spanish Fund for Health Research FIS PI12/02285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Herrero-Vanrell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

I. Bravo-Osuna and V. Andrés-Guerrero Both authors have collaborated in the same extent

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo-Osuna, I., Andrés-Guerrero, V., Pastoriza Abal, P. et al. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv. and Transl. Res. 6, 686–707 (2016). https://doi.org/10.1007/s13346-016-0336-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0336-5

Keywords

Navigation