Skip to main content

Advertisement

Log in

Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of this study was to explore the oral route as a viable potential for the skin deposition of a novel diindolylmethane derivative (DIM-D) for chemoprevention activity. Various lipid-based oral delivery systems were optimized and compared for enhancing DIM-D’s oral bioavailability and skin deposition. Preformulation studies were performed to evaluate the log P and solubility of DIM-D. Microsomal metabolism, P-glycoprotein efflux, and caco-2 monolayer permeability of DIM-D were determined. Comparative evaluation of the oral absorption and skin deposition of DIM-D-loaded various lipid-based formulations was performed in rats. DIM-D showed pH-dependent solubility and a high log P value. It was not a strong substrate of microsomal degradation and P-glycoprotein. SMEDDs comprised of medium chain triglycerides, monoglycerides, and kolliphor-HS15 (36.70 ± 0.42 nm). SNEDDs comprised of long chain triglycerides, cremophor RH40, labrasol, and TPGS (84.00 ± 14.14 nm). Nanostructured lipid carriers (NLC) consisted of compritol, miglyol, and surfactants (116.50 ± 2.12 nm). The blank formulations all showed >70 % cell viability in caco-2 cells. Differential Scanning Calorimetry confirmed the amorphization of DIM-D within the lipid matrices while Atomic Force Microscopy showed particle size distribution similar to the dynamic light scattering data. DIM-D also showed reduced permeation across caco-2 monolayer that was enhanced (p < 0.05) by SNEDDs in comparison to SMEDDs and NLC. Fabsolute for DIM-D SNEDDs, SMEDDs, and NLC was 0.14, 0.04, and 0.007, respectively. SNEDDs caused 53.90, 11.32, and 15.08-fold more skin deposition of DIM-D than the free drug, SMEDDs, and NLC, respectively, at 2 h following oral administration and shows a viable potential for use in skin cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Patel AR et al. Pharmacokinetic evaluation and in vitro-in vivo correlation (IVIVC) of novel methylene-substituted 3,3' diindolylmethane (DIM). Eur J Pharm Sci. 2012;46(1–2):8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vanderlaag K et al. Inhibition of breast cancer cell growth and induction of cell death by 1,1-bis(3'-indolyl)methane (DIM) and 5,5'-dibromoDIM. Cancer Lett. 2006;236(2):198–212.

    Article  CAS  PubMed  Google Scholar 

  3. Rahimi M, Huang KL, Tang CK. 3,3'-Diindolylmethane (DIM) inhibits the growth and invasion of drug-resistant human cancer cells expressing EGFR mutants. Cancer Lett. 2010;295(1):59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boakye CH et al. Chemoprevention of skin cancer with 1,1-Bis (3'-indolyl)-1-(aromatic) methane analog through induction of the orphan nuclear receptor, NR4A2 (Nurr1). PLoS One. 2013;8(8):e69519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boakye CH et al. Enhanced percutaneous delivery of 1, 1-bis (3-indolyl)-1-(p-chlorophenyl) methane for skin cancer chemoprevention. J Biomed Nanotechnol. 2015;11(7):1269–81.

    Article  CAS  PubMed  Google Scholar 

  6. Lipinski CA et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  CAS  PubMed  Google Scholar 

  7. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  8. Dufek MB, Bridges AS, Thakker DR. Intestinal first-pass metabolism by cytochrome p450 and not p-glycoprotein is the major barrier to amprenavir absorption. Drug Metab Dispos. 2013;41(9):1695–702.

    Article  CAS  PubMed  Google Scholar 

  9. Dufek MB et al. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab Dispos. 2013;41(3):642–50.

    Article  CAS  PubMed  Google Scholar 

  10. Usansky HH, Hu P, Sinko PJ. Differential roles of P-glycoprotein, multidrug resistance-associated protein 2, and CYP3A on saquinavir oral absorption in Sprague-Dawley rats. Drug Metab Dispos. 2008;36(5):863–9.

    Article  CAS  PubMed  Google Scholar 

  11. Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–16.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L et al. Enhancement the oral bioavailability of praziquantel by incorporation into solid lipid nanoparticles. Pharmazie. 2009;64(2):86–9.

    CAS  PubMed  Google Scholar 

  13. Li H et al. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238–44.

    Article  CAS  PubMed  Google Scholar 

  14. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):734–46.

    Article  CAS  PubMed  Google Scholar 

  15. O'Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15(5):405–15.

    Article  PubMed  Google Scholar 

  16. Gao P et al. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2386–98.

    Article  CAS  PubMed  Google Scholar 

  17. Cerpnjak K et al. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharma. 2013;63(4):427–45.

    Article  CAS  Google Scholar 

  18. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131–55.

    Article  CAS  PubMed  Google Scholar 

  19. Muller RH et al. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.

    Article  CAS  PubMed  Google Scholar 

  20. Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol. 2013;7(1):41–55.

    Article  CAS  PubMed  Google Scholar 

  21. Korang-Yeboah M, Gorantla Y, Paulos SA, Sharma P, Chaudhary J, Palaniappan R. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization. Int J Nanomedicine. 2015;10:4763–81.

  22. Sohlenius-Sternbeck AK et al. Evaluation of the human prediction of clearance from hepatocyte and microsome intrinsic clearance for 52 drug compounds. Xenobiotica. 2010;40(9):637–49.

    Article  CAS  PubMed  Google Scholar 

  23. Dixit AR, Rajput SJ, Patel SG. Preparation and bioavailability assessment of SMEDDS containing valsartan. AAPS PharmSciTech. 2010;11(1):314–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel AR et al. Evaluation of spray BIO-Max DIM-P in dogs for oral bioavailability and in Nu/nu Mice bearing orthotopic/metastatic lung tumor models for anticancer activity. Pharm Res. 2015;32:2292–300.

    Article  CAS  PubMed  Google Scholar 

  25. Patel AR, Chougule M, Singh M. EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm Res. 2014;31(10):2796–809.

    Article  CAS  PubMed  Google Scholar 

  26. Boakye CH, Patel K, Singh M. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm. 2015;489(1):106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marepally S et al. Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques. Nanomedicine (London). 2014;9(14):2157–74.

    Article  CAS  Google Scholar 

  28. Marepally S et al. Design, synthesis of novel lipids as chemical permeation enhancers and development of nanoparticle system for transdermal drug delivery. PLoS One. 2013;8(12):e82581.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Somagoni J et al. Nanomiemgel-A novel drug delivery system for topical application-in vitro and in vivo evaluation. PLoS One. 2014;9(12):e115952.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fulzele SV et al. Inhalation delivery and anti-tumor activity of celecoxib in human orthotopic non-small cell lung cancer xenograft model. Pharm Res. 2006;23(9):2094–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amidon GL et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  32. Patel K, Sarma V, Vavia P. Design and evaluation of lumefantrine—oleic acid self nanoemulsifying ionic complex for enhanced dissolution. Daru. 2013;21(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems. Eur J Pharm Sci. 2000;11(Suppl 2):S93–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.

    Article  CAS  PubMed  Google Scholar 

  35. Porter CJ, Wasan KM, Constantinides P. Lipid-based systems for the enhanced delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 2008;60(6):615–6.

    Article  CAS  PubMed  Google Scholar 

  36. Porter CJ et al. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008;60(6):673–91.

    Article  CAS  PubMed  Google Scholar 

  37. Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4–5):237–46.

    Article  CAS  PubMed  Google Scholar 

  38. Seeballuck F, Ashford MB, O'Driscoll CM. The effects of pluronics block copolymers and cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells. Pharm Res. 2003;20(7):1085–92.

    Article  CAS  PubMed  Google Scholar 

  39. Beloqui A et al. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release. 2013;166(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  40. Patel K et al. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: preparation, characterization and antitumor activity. Int J Pharm. 2014;472(1–2):214–23.

    Article  CAS  PubMed  Google Scholar 

  41. Leveque D, Jehl F. P-glycoprotein and pharmacokinetics. Anticancer Res. 1995;15(2):331–6.

    CAS  PubMed  Google Scholar 

  42. Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res. 2008;25(3):500–11.

    Article  CAS  PubMed  Google Scholar 

  43. Di L et al. Optimization of a higher throughput microsomal stability screening assay for profiling drug discovery candidates. J Biomol Screen. 2003;8(4):453–62.

    Article  CAS  PubMed  Google Scholar 

  44. Li X et al. Development of silymarin self-microemulsifying drug delivery system with enhanced oral bioavailability. AAPS PharmSciTech. 2010;11(2):672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  Google Scholar 

  46. Agrawal AG, Kumar A, Gide PS. Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surf B: Biointerfaces. 2015;126:553–60.

    Article  CAS  PubMed  Google Scholar 

  47. Porter CJ et al. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21(8):1405–12.

    Article  CAS  PubMed  Google Scholar 

  48. Patel K et al. Medium chain triglyceride (MCT) rich, paclitaxel loaded self nanoemulsifying preconcentrate (PSNP): a safe and efficacious alternative to Taxol. J Biomed Nanotechnol. 2013;9(12):1996–2006.

    Article  CAS  PubMed  Google Scholar 

  49. Goddeeris C, Coacci J, Van den Mooter G. Correlation between digestion of the lipid phase of smedds and release of the anti-HIV drug UC 781 and the anti-mycotic drug enilconazole from smedds. Eur J Pharm Biopharm. 2007;66(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  50. Fatouros DG et al. Clinical studies with oral lipid based formulations of poorly soluble compounds. Ther Clin Risk Manag. 2007;3(4):591–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76.

    Article  CAS  PubMed  Google Scholar 

  52. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4–5):445–53.

    Article  CAS  PubMed  Google Scholar 

  53. Fernandez S et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients labrasol and gelucire 44/14. Pharm Res. 2009;26(8):1901–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would want to express their gratitude to Dr. Jagan M. Somagoni for his contribution to this study.

This project was supported by the NIH Minority Biomedical Research Support (MBRS)-SC1 program [Grant # SC1 GM092779-01; MS] and the National Institute of Minority Health and Health Disparities (NIMHD) NIMHD P20 [Grant # 1P20 MD006738-03; MS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandip Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boakye, C.H.A., Patel, K., Patel, A.R. et al. Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation. Drug Deliv. and Transl. Res. 6, 526–539 (2016). https://doi.org/10.1007/s13346-016-0302-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0302-2

Keywords

Navigation