Skip to main content

Advertisement

Log in

Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate)

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

We report the controlled release of the antibiotic tetracycline (tet) HCl from a triple-layered electrospun matrix consisting of a central layer of poly(ethylene-co-vinyl acetate (PEVA) sandwiched between outer layers of poly-ε-caprolactone (PCL). These micro/nanofibre layers with tet successfully encapsulated (essentially quantitatively at 3 and 5 % w/w) in each layer, efficiently inhibited the growth of a panel of bacteria, including clinical isolates, as shown by a modified Kirby–Bauer disc assay. Furthermore, they demonstrated high biological activity in increasingly complex models of biofilm formation (models that are moving closer to the situation in a wound) by stopping biofilm formation, by killing preformed biofilms and killing mature, dense biofilm colonies of Staphylococcus aureus MRSA252. Tet is clinically useful with potential applications in wound healing and especially in complicated skin and skin-structure infections; electrospinning provides good encapsulation efficiency of tet within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release in formulations that are anti-biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Moore K, McCallion R, Searle RJ, Stacey MC, Harding KG. Prediction and monitoring the therapeutic response of chronic dermal wounds. Int Wound J. 2006;3:89–96.

    Article  PubMed  Google Scholar 

  2. Hammond AA, Miller KG, Kruczek CJ, Dertien J, Colmer-Hamood JA, Griswold JA, et al. An in vitro biofilm model to examine the effect of antibiotic ointments on biofilms produced by burn wound bacterial isolates. Burns. 2011;37:312–21.

    Article  PubMed  Google Scholar 

  3. Zilberman M, Kraitzer A, Grinberg O, Elsner JJ. Drug-eluting medical implants. Handb Exp Pharmacol. 2010;197:299–341.

    Article  PubMed  CAS  Google Scholar 

  4. Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Rep Reg. 2012;20:647–57.

    Article  Google Scholar 

  5. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44.

    Article  PubMed  Google Scholar 

  6. Kennedy P, Brammah S, Wills E. Burns, biofilm and a new appraisal of burn wound sepsis. Burns. 2010;36:49–56.

    Article  PubMed  Google Scholar 

  7. Wolcott RD, Dowd S, Kennedy J, Jones CE. Biofilm-based wound care. Adv Wound Care. 2008;1:311–6.

    Google Scholar 

  8. Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW. Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther. 2003;1:667–83.

    Article  PubMed  Google Scholar 

  9. Hornef MW, Wick MJ, Rhen M, Normark S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol. 2002;3:1033–40.

    Article  PubMed  CAS  Google Scholar 

  10. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trend Microbiol. 2005;13:34–40.

    Article  CAS  Google Scholar 

  11. Anwar H, Dasgupta MK, Costerton JW. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990;34:2043–6.

    Article  PubMed  CAS  Google Scholar 

  12. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.

    Article  PubMed  Google Scholar 

  13. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19:403–34.

    Article  PubMed  Google Scholar 

  14. Alhusein N, Blagbrough IS, De Bank PA. Electrospun matrices for localised controlled drug delivery: release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res. 2012;2:477–88. doi:10.1007/s13346-012-0106-y.

    Article  CAS  Google Scholar 

  15. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L. Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications. Eur J Pharm Biopharm. 2012;81:1–13.

    Article  PubMed  CAS  Google Scholar 

  16. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–211.

    Article  PubMed  CAS  Google Scholar 

  17. Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years? Int Wound J. 2012;9:1–19.

    Article  PubMed  Google Scholar 

  18. Kirby JP, Mazuski JE. Prevention of surgical site infection. Surg Clin N Am. 2009;89:365–89.

    Article  PubMed  Google Scholar 

  19. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–84.

  20. Raad I. Intravascular-catheter-related infections. Lancet. 1998;351:893–8.

    Article  PubMed  CAS  Google Scholar 

  21. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A. 1958;44:1072–8.

    Article  PubMed  CAS  Google Scholar 

  22. Boleij A, Muytjens CM, Bukhari SI, Cayet N, Glaser P, Hermans PW, et al. Novel clues on the specific association of Streptococcus gallolyticus subsp gallolyticus with colorectal cancer. J Infect Dis. 2011;203:1101–9.

    Article  PubMed  CAS  Google Scholar 

  23. van Merode AEJ, van der Klei HC, Busccher HJ, Waar K, Krom BP. Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiol. 2006;152:807–14.

    Article  Google Scholar 

  24. Holloway BW. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955;13:572–81.

    Article  PubMed  CAS  Google Scholar 

  25. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A. 2004;101:9786–91.

    Article  PubMed  CAS  Google Scholar 

  26. Boyle VJ, Fancher ME, Ross RW. Rapid, modified Kirby-Bauer susceptibility test with single, high-concentration antimicrobial discs. Antimicrob Agents Chemother. 1973;3:418–24.

    Article  PubMed  CAS  Google Scholar 

  27. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, et al. Contribution of autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm development. Infect Immun. 2009;77:3626–38.

    Article  PubMed  CAS  Google Scholar 

  28. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1818–24.

    Article  PubMed  CAS  Google Scholar 

  29. Miles AA, Misra SS. The estimation of the bactericidal power of the blood. J Hyg (Lond). 1938;38:732–49.

    Article  CAS  Google Scholar 

  30. Kim K, Luu YK, Chang C, Fang DF, Hsiao BS, Chu B, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release. 2004;98:47–56.

    Article  PubMed  CAS  Google Scholar 

  31. Haugland RP. LIVE/DEAD BacLight bacterial viability kits. Handbook of fluorescent probes and research products. 9th ed. Eugene: Molecular Probes; 2002. p. 626–8.

    Google Scholar 

  32. Folsom JP, Baker B, Stewart PS. In vitro efficacy of bismuth thiols against biofilms formed by bacteria isolated from human chronic wounds. J Appl Micro. 2011;111:989–96. doi:10.1111/j.1365-2672.2011.05110.x.

    Article  CAS  Google Scholar 

  33. James GA, Agostinho AM, Pulcini EDL. In vitro models for the growth and analysis of chronic wound biofilms. Adv Wound Care. 2010;1:293–8. doi:10.1089/awc.2009.0105.

    Google Scholar 

  34. Percival SL, Slone W, Linton S, Okel T, Corum L, Thomas JG. The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates. Int Wound J. 2011;8:237–43.

    Article  PubMed  Google Scholar 

  35. Percival SL, Thomas JG, Slone W, Linton S, Corum L, Okel T. The efficacy of silver dressings and antibiotics on MRSA and MSSA isolated from burn patients. Wound Repair Regen. 2011;19:767–74.

    Article  PubMed  Google Scholar 

  36. Hill KE, Malic S, McKee R, Rennison T, Harding KG, Williams DW, et al. An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. J Antimicrob Chemother. 2010;65:1195–206.

    Article  PubMed  CAS  Google Scholar 

  37. Hess DJ, Henry-Stanley MJ, Wells CL. Gentamicin promotes Staphylococcus aureus biofilms on silk suture. J Surg Res. 2011;170:302–8.

    Article  PubMed  CAS  Google Scholar 

  38. Maroudas NG. Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions. J Cell Physiol. 1977;90:511–9.

    Article  PubMed  CAS  Google Scholar 

  39. May T, Ito A, Okabe S. Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother. 2009;53:4628–39. doi:10.1128/AAC.00454-09.

    Article  PubMed  CAS  Google Scholar 

  40. Kostenko V, Lyczak J, Turner K, Martinuzzi RJ. Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother. 2010;54:5120–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Damascus University for a fully funded Scholarship (to NA). We thank Ursula Potter (Confocal Microscopy) and Jo Carter (Microbiology) for skilled support, and Nicholas J. Haddington (Pharmacy) for useful discussions, all at the University of Bath. We thank Dr. Bastiaan Krom (Academic Centre for Dentistry, Amsterdam) for generously providing E. faecalis BS385.

Conflict of interest

All four authors Nour Alhusein, Paul A. De Bank, Ian S. Blagbrough and Albert Bolhuis declare that they have no conflict of interest. There were no experiments on human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Blagbrough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alhusein, N., De Bank, P.A., Blagbrough, I.S. et al. Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv. and Transl. Res. 3, 531–541 (2013). https://doi.org/10.1007/s13346-013-0164-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0164-9

Keywords

Navigation