Skip to main content

Advertisement

Log in

Immune checkpoint therapy and type 1 diabetes

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Type 1 diabetes is caused by destruction of insulin-producing beta cells of the pancreas. The etiology of type 1 diabetes is immune-mediated by either an organ-specific autoimmune mechanism in autoimmune type 1 diabetes or a still unknown but probably immune-mediated mechanism in fulminant type 1 diabetes. Immunomodulation is therefore expected to accelerate or inhibit type 1 diabetes. Recent progress in anti-cancer therapy by immune-checkpoint blockade, such as anti-PD-1 and anti-CTLA4 monoclonal antibodies, has markedly improved the prognosis of patients with advanced cancers. These drugs activate anti-tumor immunity by blocking inhibitory signals of T lymphocytes. Activation of immunological pathways, however, is expected to accelerate immune-mediated diseases. In fact, the development of autoimmune-thyroid diseases and type 1 diabetes, including fulminant type 1 diabetes, has been reported in patients treated with immune checkpoint blockers. The development of fulminant type 1 diabetes is a major concern because of its abrupt onset and very rapid progression, leading to death unless proper treatment is initiated immediately after diagnosis. In this review, the development of type 1 diabetes with immune-checkpoint therapy and its etiological background are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ikegami H, Noso S, Babaya N, Kawabata Y. Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. J Diabetes Investig. 2011;2:415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakamura K, Kawasaki E, Imagawa A, Awata T, Ikegami H, Uchigata Y, Kobayashi T, Shimada A, Nakanishi K, Makino H, Maruyama T, Hanafusa T. The research committee on type 1 diabetes of the Japan Diabetes Society. Type 1 diabetes and interferon therapy: a nationwide survey in Japan. Diabetes Care. 2011;34:2084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma P, Allison J. The future of immune checkpoint therapy. Science. 2015;348:56–61.

    Article  CAS  PubMed  Google Scholar 

  5. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gaudy C, Clévy C, Monestier S, Dubois N, Préau Y, Mallet S, Richard MA, Grob JJ, Valéro R, Béliard S. Anti-PD1 pembrolizumab can induce exceptional fulminant type 1 diabetes. Diabetes Care. 2015;38:e182–3.

    Article  PubMed  Google Scholar 

  7. Imagawa A, Hanafusa T, Miyagawa J, et al. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. N Engl J Med. 2000;342:301–7.

    Article  CAS  PubMed  Google Scholar 

  8. Imagawa A, Hanafusa T. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. 2007;3:36–45.

    Article  PubMed  Google Scholar 

  9. Narita T, Oiso N, Taketomo Y, Okahashi K, Yamauchi K, Sato M, Uchida S, Matsuda H, Kawada A. Serological aggravation of autoimmune thyroid disease in two cases receiving nivolumab. J Dermatol. 2016;43:210–4.

    Article  PubMed  Google Scholar 

  10. Imagawa A, Hanafusa T, Awata T, Ikegami H, Uchigata Y, Osawa H, Kawasaki E, Kawabata Y, Kobayashi T, Shimada A, Shimizu I, Takahashi K, Nagata M, Makino H, Maruyama T. Report on the committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset type 1 diabetes mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012). Diabetol Int. 2012;3:179–83.

    Article  Google Scholar 

  11. Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 2000;23:1516–26.

    Article  CAS  PubMed  Google Scholar 

  12. http://www.fa.kyorin.co.jp/jds/uploads/jds_imp_nivolumab_201601.pdf. Accessed 20 June 2016.

  13. http://www.fa.kyorin.co.jp/jds/uploads/recommendation_nivolumab.pdf. Accessed 20 June 2016.

  14. Hughes J, Vudattu N, Sznol M, Gettinger S, Kluger H, Lupsa B, Herold KC. Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care. 2015;38:e55–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mellati M, Eaton KD, Brooks-Worrell BM, Hagopian WA, Martins R, Palmer JP, Hirsch IB. Anti-PD-1 and anti-PDL-1 monoclonal antibodies causing type 1 diabetes. Diabetes Care. 2015;38:e137–8.

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Liberal J, Furness AJ, Joshi K, Peggs KS, Quezada SA, Larkin J. Anti-programmed cell death-1 therapy and insulin-dependent diabetes: a case report. Cancer Immunol Immunother. 2015;64:765–7.

    Article  PubMed  Google Scholar 

  17. Okamoto M, Okamoto M, Gotoh K, Masaki T, Ozeki Y, Ando H, Anai M, Sato A, Yoshida Y, Ueda S, Kakuma T, Shibata H. Fulminant type 1 diabetes mellitus with anti-programmed cell death-1 therapy. J Diabetes Investig. 2016. doi:10.1111/jdi.12531. (Epub ahead of print).

  18. Hamid O, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  20. Wolchok JD, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  CAS  PubMed  Google Scholar 

  21. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.

    Article  PubMed  Google Scholar 

  22. http://packageinserts.bms.com/pi/pi_opdivo.pdf. Accessed 20 June 2016.

  23. http://news.bms.com/press-release/cancer/european-commission-approves-first-and-only-immuno-oncology-combination-bristol. Accessed 20 June 2016.

  24. Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. 2003;198:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.

    Article  CAS  PubMed  Google Scholar 

  26. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–22.

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1–/–mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA. 2005;102:11823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F, Hiai H, Honjo T, Okazaki T. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010;22:443–52.

    Article  CAS  Google Scholar 

  29. Yoshida T, Jiang F, Honjo T, Okazaki T. PD-1 deficiency reveals various tissue-specific autoimmunity by H-2b and dose-dependent requirement of H-2g7 for diabetes in NOD mice. Proc Natl Acad Sci USA. 2008;105:3533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiromine Y, Ikegami H, Fujisawa T, Nojima K, Kawabata Y, Noso S, Asano K, Fukai A, Ogihara T. Trinucleotide repeats of programmed cell death-1 gene (PDCD1) are associated with susceptibility to type 1 diabetes. Metabolism. 2007;56:905–9.

    Article  CAS  PubMed  Google Scholar 

  31. Fujisawa R, Haseda F, Tsutsumi C, Hiromine Y, Noso S, Kawabata Y, Mitsui S, Terasaki J, Ikegami H, Imagawa A, Hanafusa T. Low PD-1 expression in peripheral CD4+ T-cells in Japanese patients with autoimmune type 1 diabetes. Clin Exp Immunol. 2015;180:452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98:1361–75.

    Article  CAS  PubMed  Google Scholar 

  33. Joshi MN, Whitelaw BC, Palomar MT, Wu Y, Carroll PV. Immune checkpoint inhibitor related hypophysitis and endocrine dysfunction: clinical review. Clin Endocrinol. 2016. doi:10.1111/cen.13063.

  34. Imagawa A, Hanafusa T. Fulminant type 1 diabetes—an important subtype in East Asia. Diabetes Metab Res Rev. 2011;27:959–64.

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka S, Aida K, Nishida Y, Kobayashi T. Pathophysiological mechanisms involving aggressive islet cell destruction in fulminant type 1 diabetes. Endocr J. 2013;60:837–45.

    Article  CAS  PubMed  Google Scholar 

  36. Vaidya B, Kendall-Taylor P, Pearce SH. The genetics of autoimmune thyroid disease. J Clin Endocrinol Metab. 2002;87:5385–97.

    Article  CAS  PubMed  Google Scholar 

  37. Ueda H, Howson JM, Esposito L, Heward J, Snook H, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.

    Article  CAS  PubMed  Google Scholar 

  38. Ikegami H, Awata T, Kawasaki E, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Amemiya S, Kawabata Y, Kurihara S, Tanaka S, Kanazawa Y, Mochizuki M, Ogihara T. Japanese study group on type 1 diabetes genetics: the association of CTLA4 polymorphism with type 1 diabetes is concentrated in patients complicated with autoimmune thyroid disease: a multi-center collaborative study in Japan. J Clin Endocrinol Metab. 2006;91:1087–92.

    Article  CAS  PubMed  Google Scholar 

  39. Howson JM, Dunger DB, Nutland S, Stevens H, Wicker LS, Todd JA. A type 1 diabetes subgroup with a female bias is characterised by failure in tolerance to thyroid peroxidase at an early age and a strong association with the cytotoxic T-lymphocyte-associated antigen-4 gene. Diabetologia. 2007;50:741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants-in-aid for scientific research from Japan Society for the Promotion of Science (15K09404 to HI, 26461348 to YK, 26461349 to SN), a grant from the Ministry of Health, Labor and Welfare (H28-Jyunkanto-ippan-006 to HI) and a grant from Japan Agency for Medical Research and Development (16768653 to HI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ikegami.

Ethics declarations

Conflict of interest

Authors have nothing to declare related to this review.

Ethical standards

This article dose not contain any studies with human or animal subjects performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikegami, H., Kawabata, Y. & Noso, S. Immune checkpoint therapy and type 1 diabetes. Diabetol Int 7, 221–227 (2016). https://doi.org/10.1007/s13340-016-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-016-0276-9

Keywords

Navigation