Skip to main content
Log in

Prediction of Antimalarial Drug Clearance in Children: A Comparison of Three Different Interspecies Scaling Methods

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective

Allometric scaling is extensively used for the prediction of pharmacokinetic parameters from animals to humans and is often used for the selection of first-in-human dose. Allometric scaling can also be used to predict a pharmacokinetic parameter in children from adult data including animal species such as rat and dog. The current study was undertaken to evaluate if the clearances of antimalarial drugs in children with malaria can be predicted allometrically (interspecies scaling) from adult rat, dog, and human adult (healthy as well patients with malaria) clearance values.

Methods

Three methods [simple allometry, maximum lifespan potential (MLP), and MLP with an empirical correction factor] using clearance values from adult rat, dog, and adult humans with and without malaria were used for the prediction of antimalarial drug clearance in children with malaria.

Results

The results of this study indicated that the simple allometry would systematically over-predict antimalarial drug clearance in children with malaria whereas the application of MLP would under-predict the clearances of these drugs in children. Therefore, an empirical correction factor was introduced to MLP which substantially improved the antimalarial drug clearances in children.

Conclusions

Overall, the results of the study indicated that interspecies scaling using adult rat, dog, and human clearance values of antimalarial drugs could possibly be used to predict drug clearance in children with malaria of different age groups and may be useful during pediatric drug development of antimalarial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reigner BG, Blesch KS. Estimating the starting dose for entry into humans: principles and practice. Eur J Clin Pharmacol. 2002;57:835–45.

    Article  CAS  PubMed  Google Scholar 

  2. Collins JM, Zaharko S, Dedrick RL, Chabner BA. Potential roles for preclinical pharmacology in phase I clinical trials. Cancer Treat Rep. 1986;70:73–80.

    CAS  PubMed  Google Scholar 

  3. Mahmood I, Green MD, Fisher JE. Selection of the first time dose in humans: Comparison of different approaches based on interspecies scaling of clearance. J Clin Pharmacol. 2003;43:692–7.

    Article  CAS  PubMed  Google Scholar 

  4. Mahmood I. First-in-human dose selection. In: Interspecies pharmacokinetic scaling: principles and application of allometric scaling. Rockville: Pine House Publishers; 2014. p. 259–87.

  5. Mahmood I. Dose selection in children: allometry and other methods. In: Pediatric pharmacology and pharmacokinetics. Rockville: Pine House Publishers; 2015. p. 184–216.

  6. Schmidt-Nielsen K. Scaling: the size of living things. In: Why is animal size so important? Cambridge: Cambridge University Press; 1984. p. 1–6.

  7. Boxenbaum H. Interspecies pharmacokinetic scaling and the evolutionary comparative paradigm. Drug Metab Rev. 1984;15:1071–121.

    Article  CAS  PubMed  Google Scholar 

  8. Mahmood I. Introduction to allometry. In: Interspecies pharmacokinetic scaling: principles and application of allometric scaling. Rockville: Pine House Publishers; 2015. p. 23–38.

  9. Knibbe CA, Zuideveld KP, Aarts LP, et al. Allometric relationships between the pharmacokinetics of propofol in rats, children and adults. Br J Clin Pharmacol. 2005;59:705–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahmood I. Interspecies scaling for the prediction of drug clearance in children: application of maximum lifespan potential and an empirical correction factor. Clin Pharmacokinet. 2010;49:479–92.

    Article  CAS  PubMed  Google Scholar 

  11. Senarathna SM, Batty KT. Interspecies allometric scaling of antimalarial drugs and potential application to pediatric dosing. Antimicrob Agents Chemother. 2014;58:6068–78.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boxenbaum H. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J Pharmacokinet Biopharm. 1980;8:165–76.

    Article  CAS  PubMed  Google Scholar 

  13. Mahmood I, Balian JD. Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica. 1996;26:887–95.

    Article  CAS  PubMed  Google Scholar 

  14. Mansor SM, Ward SA, Edwards G. The effect of fever on quinine and quinidine disposition in the rat. J Pharm Pharmacol. 1991;43:705–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Wong CW, Coville PF, Wanwimolruk S. Effect of the grapefruit flavonoid naringin on pharmacokinetics of quinine in rats. Drug Metabol Drug Interact. 2000;17:351–63.

    Article  CAS  PubMed  Google Scholar 

  16. Clohisy DR, Gibson TP. Comparison of pharmacokinetic parameters of intravenous quinidine and quinine in dogs. J Cardiovasc Pharmacol. 1982;4:107–10.

    Article  CAS  PubMed  Google Scholar 

  17. Claessen FA, van Boxtel CJ, Perenboom RM, Tange RA, Wetsteijn JC, Kager PA. Quinine pharmacokinetics: ototoxic and cardiotoxic effects in healthy Caucasian subjects and in patients with falciparum malaria. Trop Med Int Health. 1998;3:482–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ho PC, Chalcroft SC, Coville PF, Wanwimolruk S. Grapefruit juice has no effect on quinine pharmacokinetics. Eur J Clin Pharmacol. 1999;55:393–8.

    Article  CAS  PubMed  Google Scholar 

  19. Pukrittayakamee S, Pitisuttithum P, Zhang H, Jantra A, Wanwimolruk S, White NJ. Effects of cigarette smoking on quinine pharmacokinetics in malaria. Eur J Clin Pharmacol. 2002;58:315–9.

    Article  CAS  PubMed  Google Scholar 

  20. Pussard E, Barennes H, Daouda H, Clavier F, Sani AM, Osse M, Granic G, Verdier F. Quinine disposition in globally malnourished children with cerebral malaria. Clin Pharmacol Therap. 1999;65:500–10.

    Article  CAS  Google Scholar 

  21. van Hensbroek MB, Kwiatkowski D, van den Berg B, Hoek FJ, van Boxtel CJ, Kager PA. Quinine pharmacokinetics in young children with severe malaria. Am J Trop Med Hyg. 1996;54:237–42.

    PubMed  Google Scholar 

  22. Salako LA, Sowunmi A, Akinbami FO. Pharmacokinetics of quinine in African children suffering from kwashiorkor. Br J Clin Pharmacol. 1989;28:197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li QG, Peggins JO, Fleckenstein LL, Masonic K, Heiffer MH, Brewer TG. The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol. 1998;50:173–82.

    Article  CAS  PubMed  Google Scholar 

  24. Bennett K, Si Y, Steinbach T, Zhang J, Li Q. Pharmacokinetic and pharmacodynamic evaluation of intramuscular artesunate in healthy beagle dogs. Am J Trop Med Hyg. 2008;79:36–41.

    CAS  PubMed  Google Scholar 

  25. Li Q, Cantilena LR, Leary KJ, Saviolakis GA, Miller RS, Melendez V, Weina PJ. Pharmacokinetic profiles of artesunate after single intravenous doses at 0.5, 1, 2, 4, and 8 mg/kg in healthy volunteers: a phase I study. Am J Trop Med Hyg. 2009;81:615–21.

    Article  CAS  PubMed  Google Scholar 

  26. Morris CA, Duparc S, Borghini-Fuhrer I, Jung D, Shin CS, Fleckenstein L. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J. 2011;10:263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Batty KT, Thu LT, Davis TM, Ilett KF, Mai TX, Hung NC, Tien NP, Powell SM, Thien HV, Binh TQ, Kim NV. A pharmacokinetic and pharmacodynamic study of intravenous vs oral artesunate in uncomplicated falciparum malaria. Br J Clin Pharmacol. 1998;45(2):123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nealon C, Dzeing A, Müller-Römer U, Planche T, Sinou V, Kombila M, Kremsner PG, Parzy D, Krishna S. Intramuscular bioavailability and clinical efficacy of artesunate in gabonese children with severe malaria. Antimicrob Agents Chemother. 2002;46:3933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu F, Du F, Li X, Xing J. An investigation of the auto-induction of and gender-related variability in the pharmacokinetics of dihydroartemisinin in the rat. Malar J. 2012;11:379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Classen W, Altmann B, Gretener P, Souppart C, Skelton-Stroud P, Krinke G. Differential effects of orally versus parenterally administered qinghaosu derivative artemether in dogs. Exp Toxicol Pathol. 1999;51:507–16.

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Hickman M. Toxicokinetic and toxicodynamic (TK/TD) evaluation to determine and predict the neurotoxicity of artemisinins. Toxicology. 2011;279:1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Na Bangchang K, Karbwang J, Thomas CG, Thanavibul A, Sukontason K, Ward SA, Edwards G. Pharmacokinetics of artemether after oral administration to healthy Thai males and patients with acute, uncomplicated falciparum malaria. Br J Clin Pharmacol. 1994;37:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karbwang J, Na-Bangchang K, Tin T, Sukontason K, Rimchala W, Harinasuta T. Pharmacokinetics of intramuscular artemether in patients with severe falciparum malaria with or without acute renal failure. Br J Clin Pharmacol. 1998;45:597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salman S, Page-Sharp M, Griffin S, Kose K, Siba PM, Ilett KF, Mueller I, Davis TM. Population pharmacokinetics of artemether, lumefantrine, and their respective metabolites in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother. 2011;55:5306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mithwani S, Aarons L, Kokwaro GO, Majid O, Muchohi S, Edwards G, Mohamed S, Marsh K, Watkins W. Population pharmacokinetics of artemether and dihydroartemisinin following single intramuscular dosing of artemether in African children with severe falciparum malaria. Br J Clin Pharmacol. 2004;57:146–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pudney M, Gutteridge W, Zeman A, Dickins M, Woolley JL. Atovaquone and proguanil hydrochloride: a review of nonclinical studies. J Travel Med. 1999;6(Suppl 1):S8–12.

    PubMed  Google Scholar 

  37. Hussein Z, Eaves J, Hutchinson DB, Canfield CJ. Population pharmacokinetics of atovaquone in patients with acute malaria caused by Plasmodium falciparum. Clin Pharmacol Ther. 1997;61:518–30.

    Article  CAS  PubMed  Google Scholar 

  38. Hussein Z, Eaves CJ, Hutchinson DB, Canfield CJ. Population pharmacokinetics of proguanil in patients with acute P. falciparum malaria after combined therapy with atovaquone. Br J Clin Pharmacol. 1996;42:589–97.

    Article  CAS  PubMed  Google Scholar 

  39. Gillotin C, Mamet JP, Veronese L. Lack of a pharmacokinetic interaction between atovaquone and proguanil. Eur J Clin Pharmacol. 1999;55:311–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hughes W, Dorenbaum A, Yogev R, Beauchamp B, Xu J, McNamara J, Moye J, Purdue L, van Dyke R, Rogers M, Sadler B. Phase I safety and pharmacokinetics study of micronized atovaquone in human immunodeficiency virus-infected infants and children. Pediatric AIDS Clinical Trials Group. Antimicrob Agents Chemother. 1998;42:1315–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabchareon A, Attanath P, Phanuaksook P, Chanthavanich P, Poonpanich Y, Mookmanee D, Chongsuphajaisiddhi T, Sadler BM, Hussein Z, Canfield CJ, Hutchinson DB. Efficacy and pharmacokinetics of atovaquone and proguanil in children with multidrug-resistant Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 1998;92:201–6.

    Article  CAS  PubMed  Google Scholar 

  42. Brocks DR, Toni JW. Pharmacokinetics of halofantrine in the rat: stereoselectivity and interspecies comparisons. Biopharm Drug Dispos. 1999;20:165–9.

    Article  CAS  PubMed  Google Scholar 

  43. Humberstone AJ, Porter CJ, Charman WN. A physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine. J Pharm Sci. 1996;85:525–9.

    Article  CAS  PubMed  Google Scholar 

  44. Veenendaal JR, Parkinson AD, Kere N, Rieckmann KH, Edstein MD. Pharmacokinetics of halofantrine and n-desbutylhalofantrine in patients with falciparum malaria following a multiple dose regimen of halofantrine. Eur J Clin Pharmacol. 1991;41:161–4.

    Article  CAS  PubMed  Google Scholar 

  45. Karbwang J, Milton KA, Na Bangchang K, Ward SA, Edwards G, Bunnag D. Pharmacokinetics of halofantrine in Thai patients with acute uncomplicated falciparum malaria. Br J Clin Pharmacol. 1991;31:484–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacal. 1989;28(1):71–7.

    Article  CAS  Google Scholar 

  47. Watkins WM, Winstanley PA, Mberu EK, Kokwaro G, Murphy SA, Newton CJ, Mwangi I, Forster D, Marsh K. Halofantrine pharmacokinetics in Kenyan children with non-severe and severe malaria. Br J Clin Pharmacol. 1995;39:283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Louisa M, Soetikno V, Nafrialdi RS, Suyatna FD. Co-administration of ritonavir and primaquine decreases plasma concentration of primaquine: single- and multiple-dose study in the rats. Acta Med Indones. 2012;44:273–9.

    PubMed  Google Scholar 

  49. Bertol CD, Oliveira PR, Kuminek G, Rauber GS, Stulzer HK, Silva MA. Increased bioavailability of primaquine using poly(ethylene oxide) matrix extended-release tablets administered to beagle dogs. Ann Trop Med Parasitol. 2011;105:475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mihaly GW, Ward SA, Edwards G, Nicholl DD, Orme ML, Breckenridge AM. Pharmacokinetics of primaquine in man. I. Studies of the absolute bioavailability and effects of dose size. Br J Clin Pharmacol. 1985;19(6):745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhatia SC, Saraph YS, Revankar SN, Doshi KJ, Bharucha ED, Desai ND, Vaidya AB, Subrahmanyam D, Gupta KC, Satoskar RS. Pharmacokinetics of primaquine in patients with P. vivax malaria. Eur J Clin Pharmacol. 1986;31:205–10.

    Article  CAS  PubMed  Google Scholar 

  52. Moore BR, Salman S, Benjamin J, Page-Sharp M, Robinson LJ, Waita E, Batty KT, Siba P, Mueller I, Davis TM, Betuela I. Pharmacokinetic properties of single-dose primaquine in Papua New Guinean children: feasibility of abbreviated high-dose regimens for radical cure of vivax malaria. Antimicrob Agents Chemother. 2014;58:432–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang SH, Lee MG. Dose-independent pharmacokinetics of clindamycin after intravenous and oral administration to rats: contribution of gastric first-pass effect to low bioavailability. Int J Pharm. 2007;332:17–23.

    Article  CAS  PubMed  Google Scholar 

  54. Batzias GC, Delis GA, Athanasiou LV. Clindamycin bioavailability and pharmacokinetics following oral administration of clindamycin hydrochloride capsules in dogs. Vet J. 2005;170:339–45.

    Article  CAS  PubMed  Google Scholar 

  55. Gatti G, Flaherty J, Bubp J, White J, Borin M, Gambertoglio J. Comparative study of bioavailabilities and pharmacokinetics of clindamycin in healthy volunteers and patients with AIDS. Antimicrob Agents Chemother. 1993;37:1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Flaherty JF, Rodondi LC, Guglielmo BJ, Fleishaker JC, Townsend RJ, Gambertoglio JG. Comparative pharmacokinetics and serum inhibitory activity of clindamycin in different dosing regimens. Antimicrob Agents Chemother. 1988;32:1825–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lavy E, Ziv G, Shem-Tov M, Glickman A, Dey A. Pharmacokinetics of clindamycin HCl administered intravenously, intramuscularly and subcutaneously to dogs. J Vet Pharmacol Ther. 1999;22:261–5.

    Article  CAS  PubMed  Google Scholar 

  58. Bell MJ, Shackelford P, Smith R, Schroeder K. Pharmacokinetics of clindamycin phosphate in the first year of life. J Pediatr. 1984;105:482–6.

    Article  CAS  PubMed  Google Scholar 

  59. Tarning J, Lindegardh N, Sandberg S, Day NJ, White NJ, Ashton M. Pharmacokinetics and metabolism of the antimalarial piperaquine after intravenous and oral single doses to the rat. J Pharm Sci. 2008;97:3400–10.

    Article  CAS  PubMed  Google Scholar 

  60. Ahmed T, Sharma P, Gautam A, et al. Safety, tolerability, and single- and multiple-dose pharmacokinetics of piperaquine phosphate in healthy subjects. J Clin Pharmacol. 2008;48:166–75.

    Article  CAS  PubMed  Google Scholar 

  61. Batty KT, Moore BR, Stirling V, et al. Toxicology and pharmacokinetics of piperaquine in mice. Toxicology. 2008;249:55–61.

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen TC, Nguyen NQ, Nguyen XT, Bui D, Travers T, Edstein MD. Pharmacokinetics of the antimalarial drug piperaquine in healthy Vietnamese subjects. Am J Trop Med Hyg. 2008;79:620–3.

    PubMed  Google Scholar 

  63. Sim IK, Davis TM, Ilett KF. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob Agents Chemother. 2005;49:2407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Karunajeewa HA, Ilett KF, Mueller I, et al. Pharmacokinetics and efficacy of piperaquine and chloroquine in Melanesian children with uncomplicated malaria. Antimicrob Agents Chemother. 2008;52:237–43.

    Article  CAS  PubMed  Google Scholar 

  65. Rozman RS, Molek NA, Koby R. The absorption, distribution, and excretion in mice of the antimalarial mefloquine, erythro-2,8-bis(trifluoromethyl)-alpha-(2-piperidyl)-4-quinoline methanol hydrochloride. Drug Metab Dispos. 1978;6:654–8.

    CAS  PubMed  Google Scholar 

  66. Baudry S, Pham YT, Baune B, Vidrequin S, Crevoisier C, Gimenez F, Farinotti R. Stereoselective passage of mefloquine through the blood-brain barrier in the rat J Pharm Pharmacol. 1997;49:1086–90.

    CAS  PubMed  Google Scholar 

  67. Karbwang J, Back DJ, Bunnag D, Breckenridge AM. Pharmacokinetics of mefloquine in combination with sulfadoxine-pyrimethamine and primaquine in male Thai patients with falciparum malaria. Bull World Health Organ. 1990;68:633–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Singhasivanon V, Chongsuphajaisiddhi T, Sabcharoen A, Attanath P, Webster HK, Wernsdorfer WH, Sheth UK, Djaja Lika I. Pharmacokinetics of mefloquine in children aged 6 to 24 months. Eur J Drug Metab Pharmacokinet. 1992;17:275–9.

    Article  CAS  PubMed  Google Scholar 

  69. Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Bansod S, Rhein HG. Use of mefloquine in children - a review of dosage, pharmacokinetics and tolerability data. Malar J. 2011;10:292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Karbwang J, Bunnag D, Breckenridge AM, Back DJ. The pharmacokinetics of mefloquine when given alone or in combination with sulphadoxine and pyrimethamine in Thai male and female subjects. Eur J Clin Pharmacol. 1987;32:173–7.

    Article  CAS  PubMed  Google Scholar 

  71. Coleman MD, Mihaly GW, Edwards G, Howells RE, Breckenridge AM. The disposition of pyrimethamine base and pyrimethamine pamoate in the mouse: effect of route of administration. Biopharm Drug Dispos. 1986;7:173–82.

    Article  CAS  PubMed  Google Scholar 

  72. Mouankie JB, Senczuk W, Florek E. Kinetics of pyrimethamine in young and adult rats on a standard diet and on a low-protein diet. Eur J Drug Metab Pharmacokinet. 2009;34:173–6.

    Article  CAS  PubMed  Google Scholar 

  73. Ahmad RA, Rogers HJ. Pharmacokinetics and protein binding interactions of dapsone and pyrimethamine. Br J Clin Pharmacol. 1980;10:519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barnes KI, Little F, Smith PJ, Evans A, Watkins WM, White NJ. Sulfadoxine-pyrimethamine pharmacokinetics in malaria: pediatric dosing implications. Clin Pharmacol Ther. 2006;80:582–96.

    Article  CAS  PubMed  Google Scholar 

  75. Mahmood I. Interspecies scaling of clearance. In: Interspecies pharmacokinetic scaling. Principles and application of allometric scaling. Rockville; Pine House Publishers: 2005. p. 39–85.

Download references

Acknowledgments

The authors would like to acknowledge the assistance of Dr. Gilbert Burckart in the preparation and editing of this manuscript. This work was not supported by any private or government fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftekhar Mahmood.

Ethics declarations

Conflict of interest

There is no conflict of interest with this work.

Additional information

The views expressed in this article are those of the authors and do not reflect the official policy of the FDA. No official support or endorsement by the FDA is intended or should be inferred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, I., Cheng, A., Brauer, E. et al. Prediction of Antimalarial Drug Clearance in Children: A Comparison of Three Different Interspecies Scaling Methods. Eur J Drug Metab Pharmacokinet 41, 767–775 (2016). https://doi.org/10.1007/s13318-015-0305-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0305-2

Keywords

Navigation