Skip to main content
Log in

Sunitinib tissue distribution changes after coadministration with ketoconazole in mice

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Sunitinib is a multitargeted tyrosine kinase inhibitor approved for gastrointestinal stromal tumor (GIST), advanced renal cell carcinoma (RCC) and pancreatic neuroendocrine tumors. It is metabolized via CYP3A4 and has low brain penetration due to efflux transporters ABCB1B and ABCG2. We studied the interaction with ketoconazole (50 mg/kg), antifungal drug which shares metabolic pathways and efflux transporters, in ICR female mice after oral coadministration (30 min apart) of 60 mg/kg sunitinib (study group) versus sunitinib alone (control group). Plasma, liver, kidney and brain sunitinib concentrations were measured by HPLC at 2, 5, 10, 20, 40 min, 1, 2, 4, 6, 12 h post-sunitinib administration, and non-compartmental pharmacokinetic parameters estimated. In plasma, ketoconazole coadministration increased plasma maximum concentration (C MAX) 60 %, delayed time to C MAX (T MAX); 1.6-fold greater area under the curve AUC0→∞ (p < 0.001); lower apparent steady-state volume of distribution (V SS/F) and oral clearance (Cl/F) 40 and 61 %, respectively; and shorter elimination half-life (t 1/2). Sunitinib exhibited extensive tissue distribution which increased after ketoconazole coadministration: total area under the curve (AUC0→∞) increased 1.8-, 2.8- and 1.2-fold in kidney, liver and brain, respectively (all p < 0.001). Sunitinib presented high tissue-to-plasma AUC0→∞ ratio in liver (17.8 ± 1.2), kidney (14.6 ± 1.52) and brain (2.25 ± 0.18) which was modified after coadministration: AUC0→∞ ratio increased in liver (31.4 ± 4.7; p < 0.001), kidney (17.1 ± 2.2; p > 0.05) and decreased in brain (1.70 ± 0.23, p > 0.05). The results showed a significant ketoconazole–sunitinib interaction that affected plasma, tissue pharmacokinetics and tissue uptake mechanisms. The study portrays the risk to increase toxicity and potential clinical translatability to treat tumors in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkharfy KM, Ahmad A, Khan RMA, Al-Shagha WM (2014) Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur J Drug Metab Pharmacokinet. doi:10.1007/s13318-014-0207-8

    Google Scholar 

  • Bailer AJ (1988) Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 16:303–309

    Article  CAS  PubMed  Google Scholar 

  • Bisht S, Feldmann G, Brossart P (2013) Pharmacokinetics and pharmacodynamics of sunitinib for the treatment of advanced pancreatic neuroendocrine tumors. Expert Opin Drug Metab Toxicol 9:777–788

    Article  CAS  PubMed  Google Scholar 

  • Blanchet B, Saboureau C, Benichou AS, Billemont B, Taieb F, Ropert S (2009) Development and validation of an HPLC–UV–visible method for sunitinib quantification in human plasma. Clin Chim Acta 404:134–139

    Article  CAS  PubMed  Google Scholar 

  • Bowlin SJ, Xia F, Wang W, Robinson KD, Stanek EJ (2013) Twelve-month frequency of drug-metabolizing enzyme and transporter-based drug–drug interaction potential in patients receiving oral enzyme-targeted kinase inhibitor antineoplastic agents. Clin Proc Mayo Clin 88:139–148

    Article  CAS  PubMed  Google Scholar 

  • Britten CD, Kabbinavar F, Hecht JR, Bello CL, Li J, Baum C et al (2008) A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol 61:515–524

    Article  CAS  PubMed  Google Scholar 

  • Buxhofer-Ausch V, Secky L, Wlcek K, Svoboda M, Kounnis V, Briasoulis E et al (2013) Tumor-specific expression of organic anion-transporting polypeptides: transporters as novel targets for cancer therapy. J Drug Deliv 2013:863539

    Article  PubMed  PubMed Central  Google Scholar 

  • Caffo M, Barresi V, Caruso G, Cutugno M, La Fata G, Venza M et al (2013) Innovative therapeutic strategies in the treatment of brain metastases. Int J Mol Sci 14:2135–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro LJ, Sahagún AM, Diez MJ, Fernández N, Sierra M, García JJ (2009) Pharmacokinetics of doxycycline in sheep after intravenous and oral administration. Vet J. 180:389–395

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Z, Liu M, Liao M, Wang X, Du H et al (2014) Determination of sunitinib and its active metabolite, N-desethyl sunitinib in mouse plasma and tissues by UPLC–MS/MS: assay development and application to pharmacokinetic and tissue distribution studies. Biomed Chromatogr. doi:10.1002/bmc.3331

    PubMed Central  Google Scholar 

  • Chew WK, Segarra I, Ambu S, Mak JW (2012) Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother 56:1762–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow LQM, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25:884–896

    Article  CAS  PubMed  Google Scholar 

  • Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Wit D, Gelderblom H, Sparreboom A, den Hartigh J, den Hollander M, König-Quartel JMC et al (2013) Midazolam as a phenotyping probe to predict sunitinib exposure in patients with cancer. Cancer Chemother Pharmacol 73(1):87–96

    Article  PubMed  Google Scholar 

  • del Fabbro E, Dev R, Cabanillas ME, Busaidy NL, Rodriguez EC, Bruera E (2012) Extreme hypothyroidism associated with sunitinib treatment for metastatic renal cancer. J Chemother 24:221–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Gion P, Kanefendt F, Lindauer A, Scheffler M, Doroshyenko O, Fuhr U et al (2011) Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on pyrimidines, pyridines and pyrroles. Clin Pharmacokinet 50:551–603

    Article  PubMed  Google Scholar 

  • Duckett DR, Cameron MD (2010) Metabolism considerations for kinase inhibitors in cancer treatment. Expert Opin Drug Metab Toxicol 6:1175–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek AZ, Raza A, Chi M, Singhal M, Oberoi R, Mittapalli RK et al (2013) Brain metastases from renal cell carcinoma in the era of tyrosine kinase inhibitors. Clin Genitourin Cancer 11:155–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutreix C, Peng B, Mehring G, Hayes M, Capdeville R, Pokorny R et al (2004) Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol 54:290–294

    Article  CAS  PubMed  Google Scholar 

  • Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JVS et al (2007) Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 13:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Gore ME, Hariharan S, Porta C, Bracarda S, Hawkins R, Bjarnason GA et al (2011) Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 117:501–509

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt DJ, Zhao Y, Venkatakrishnan K, Duan SX, Harmatz JS, Parent SJ et al (2011) Mechanism of cytochrome P450-3A inhibition by ketoconazole. J Pharm Pharmacol 63:214–221

    Article  CAS  PubMed  Google Scholar 

  • Haznedar JÖ, Patyna S, Bello CL, Peng GW, Speed W, Yu X et al (2009) Single- and multiple-dose disposition kinetics of sunitinib malate, a multitargeted receptor tyrosine kinase inhibitor: comparative plasma kinetics in non-clinical species. Cancer Chemother Pharmacol 64:691–706

    Article  CAS  PubMed  Google Scholar 

  • Hiles JJ, Kolesar JM (2008) Role of sunitinib and sorafenib in the treatment of metastatic renal cell carcinoma. Am J Health Syst Pharm 65:123–131

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA et al (2009) Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 15:6062–6069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi AD, Loilome W, Siu I-M, Tyler B, Gallia GL, Riggins GJ (2012) Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy. PLoS One 7:e44372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim A, Balis FM, Widemann BC (2009) Sorafenib and sunitinib. Oncologist 14:800–805

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman JJ, Lalani S, Magluilo J, Levine B, Darwin WD (1996) Human pharmacokinetics of intravenous, sublingual, and buccal buprenorphine. J Anal Toxicol 20:369–378

    Article  CAS  PubMed  Google Scholar 

  • Lacouture ME, Reilly LM, Gerami P, Guitart J (2008) Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. Ann Oncol 19:1955–1961

    Article  CAS  PubMed  Google Scholar 

  • Lim AYL, Segarra I, Chakravarthi S, Akram S, Judson JP (2010) Histopathology and biochemistry analysis of the interaction between sunitinib and paracetamol in mice. BMC Pharmacol 10:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lombardi G, Di Stefano AL, Zagonel V, Tabouret E (2014) Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: an overview of the literature. Cancer Treat Rev 40:951–959

    Article  PubMed  Google Scholar 

  • Martínez-Jordá R, Rodriguez-Sasiain JM, Suárez E, Calvo R (1990) Serum binding of ketoconazole in health and disease. Int J Clin Pharmacol Res 10:271–276

    PubMed  Google Scholar 

  • Mermershtain W, Lazarev I, Shani-Shrem N, Ariad S (2013) Fatal liver failure in a patient treated with sunitinib for renal cell carcinoma. Clin Genitourin Cancer 11:70–72

    Article  PubMed  Google Scholar 

  • Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O (2008) Tissue concentrations: do we ever learn? J Antimicrob Chemother 61:235–237

    Article  CAS  PubMed  Google Scholar 

  • Nassar I, Pasupati T, Judson JP, Segarra I (2009) Reduced exposure of imatinib after coadministration with acetaminophen in mice. Indian J Pharmacol 41:167–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar I, Pasupati T, Judson JP, Segarra I (2010) Histopathological study of the hepatic and renal toxicity associated with the co-administration of imatinib and acetaminophen in a preclinical mouse model. Malays J Pathol 32:1–11

    PubMed  Google Scholar 

  • Natarajan K, Xie Y, Baer MR, Ross DD (2012) Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83:1084–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 23:22–44

    Article  CAS  PubMed  Google Scholar 

  • Otaegui D, Rodríguez-Gascón A, Zubia A, Cossío FP, Pedraz JL (2009) Pharmacokinetics and tissue distribution of Kendine 91, a novel histone deacetylase inhibitor, in mice. Cancer Chemother Pharmacol 64:153–159

    Article  CAS  PubMed  Google Scholar 

  • Pan E, Yu D, Yue B, Potthast L, Chowdhary S, Smith P et al (2012) A prospective phase II single-institution trial of sunitinib for recurrent malignant glioma. J Neurooncol 110:111–118

    Article  CAS  PubMed  Google Scholar 

  • Papaetis GS, Syrigos KN (2009) Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs 23:377–389

    Article  CAS  PubMed  Google Scholar 

  • Ridruejo E, Cacchione R, Villamil AG, Marciano S, Gadano AC, Mandó OG (2007) Imatinib-induced fatal acute liver failure. World J Gastroenterol 13:6608–6611

    Google Scholar 

  • Segarra I, Movshin DA, Zarif L (2002) Pharmacokinetics and tissue distribution after intravenous administration of a single dose of amphotericin B cochleates, a new lipid-based delivery system. J Pharm Sci 91(8):1827–1837

    Article  CAS  PubMed  Google Scholar 

  • Seneca N, Zoghbi SS, Shetty HU, Tuan E, Kannan P, Taku A et al (2010) Effects of ketoconazole on the biodistribution and metabolism of [11C]loperamide and [11C]N-desmethyl-loperamide in wild-type and P-gp knockout mice. Nucl Med Biol 37:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ et al (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y (2013) Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos 34:45–78

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Robey RW, Bates SE, Ambudkar SV (2008) Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 37:359–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Soffietti R, Trevisan E, Rudà R (2012) Targeted therapy in brain metastasis. Curr Opin Oncol 24:679–686

    Article  CAS  PubMed  Google Scholar 

  • Soo GW, Law JHK, Kan E, Tan SY, Lim WY, Chay G et al (2010) Differential effects of ketoconazole and primaquine on the pharmacokinetics and tissue distribution of imatinib in mice. Anticancer Drugs 21:695–703

    CAS  PubMed  Google Scholar 

  • Sykes BW, Underwood C, McGowan CM, Mills PC (2014) Pharmacokinetics of intravenous, plain oral and enteric-coated oral omeprazole in the horse. J Vet Pharmacol Ther. doi:10.1111/jvp.12169

    PubMed  Google Scholar 

  • Tan SY, Kan E, Lim WY, Chay G, Law JHK, Soo GW et al (2011) Metronidazole leads to enhanced uptake of imatinib in brain, liver and kidney without affecting its plasma pharmacokinetics in mice. J Pharm Pharmacol 63:918–925

    Article  CAS  PubMed  Google Scholar 

  • Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I (2013) Potential protective effect of sunitinib after administration of diclofenac: biochemical and histopathological drug–drug interaction assessment in a mouse model. Naunyn Schmiedebergs Arch Pharmacol 386:619–633

    Article  CAS  PubMed  Google Scholar 

  • Tang SC, Lagas JS, Lankheet NAG, Poller B, Hillebrand MJ, Rosing H et al (2012) Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 130:223–233

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Schoemann A, Blanchet B, Bardin C, Noé G, Boudou-Rouquette P, Vidal M et al (2013) Drug interactions with solid tumour-targeted therapies. Crit Rev Oncol Hematol 89:179–196

    Article  PubMed  Google Scholar 

  • van Erp NP, Gelderblom H, Guchelaar H-J (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706

    Article  PubMed  Google Scholar 

  • Wang E, Lew K, Casciano CN, Clement RP, Johnson WW (2002) Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother 46:160–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise AM, Liu CY, Shields AF (2009) Fatal liver failure in a patient on acetaminophen treated with sunitinib malate and levothyroxine. Ann Pharmacother 43:761–766

    Article  CAS  PubMed  Google Scholar 

  • Yang J, He Y, Du Y-X, Tang L-L, Wang G-J, Fawcett JP (2009) Pharmacokinetic properties of S-adenosylmethionine after oral and intravenous administration of its tosylate disulfate salt: a multiple-dose, open-label, parallel-group study in healthy Chinese volunteers. Clin Ther 31:311–320

    Article  CAS  PubMed  Google Scholar 

  • Yuan J (1993) Estimation of variance for AUC in animal studies. J Pharm Sci 82:761–763

    Article  CAS  PubMed  Google Scholar 

  • Zeitlinger MA, Derendorf H, Mouton JW, Cars O, Craig WA, Andes D et al (2011) Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L et al (2013) Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib–glucuronide. Clin Cancer Res 19:1458–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Ms NorBazlin Md Marham and Ms Amy Saik for technical assistance. The authors acknowledge the International Medical University for funding Grant B1/06-Res(08)2009.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Segarra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chee, E.LC., Lim, A.Y.L., Modamio, P. et al. Sunitinib tissue distribution changes after coadministration with ketoconazole in mice. Eur J Drug Metab Pharmacokinet 41, 309–319 (2016). https://doi.org/10.1007/s13318-015-0264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0264-7

Keywords

Navigation