Skip to main content

Advertisement

Log in

Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Fokas E, O’Neill E, Gordon-Weeks A, Mukherjee S, McKenna WG, Muschel RJ. Pancreatic ductal adenocarcinoma: from genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic. Biochim Biophys Acta. 2015;1855:61–82.

    CAS  PubMed  Google Scholar 

  3. Li HY, Cui ZM, Chen J, Guo XZ, Li YY. Pancreatic cancer: diagnosis and treatments. Tumour Biol. 2015;36:1375–84.

    Article  CAS  PubMed  Google Scholar 

  4. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu YY, Yuan Z. Pancreatic cancer stem cells. Am J Cancer Res. 2015;5:894–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhagwandin VJ, Bishop JM, Wright WE, Shay JW. The metastatic potential and chemoresistance of human pancreatic cancer stem cells. PLoS One. 2016;11:e0148807.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mathew E, Brannon AL, Del Vecchio A, Garcia PE, Penny MK, Kane KT, Vinta A, Buckanovich RJ, di Magliano MP: Mesenchymal stem cells promote pancreatic tumor growth by inducing alternative polarization of macrophages. Neoplasia (New York, NY) 2016; 18:142–151.

  8. Alman BA. The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol. 2015;11:552–60.

    Article  CAS  PubMed  Google Scholar 

  9. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scales SJ, de Sauvage FJ. Mechanisms of hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 2009;30:303–12.

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Xie G, Fan Q, Xie J. Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene. 2010;29:469–81.

    Article  PubMed  Google Scholar 

  12. Barakat MT, Humke EW, Scott MP. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med. 2010;16:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer. 2012;131:30–40.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Turck CM, Teumer JK, Stavnezer E. Unique sequence, ski, in Sloan-Kettering avian retroviruses with properties of a new cell-derived oncogene. J Virol. 1986;57:1065–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell. 1999;4:499–509.

    Article  CAS  PubMed  Google Scholar 

  16. Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. International journal of cancer Journal international du cancer. 2004;108:818–24.

    Article  CAS  PubMed  Google Scholar 

  17. Buess M, Terracciano L, Reuter J, Ballabeni P, Boulay JL, Laffer U, Metzger U, Herrmann R, Rochlitz C. Amplification of SKI is a prognostic marker in early colorectal cancer. Neoplasia (New York, NY). 2004;6:207–12.

    Article  CAS  Google Scholar 

  18. Heider TR, Lyman S, Schoonhoven R, Behrns KE. Ski promotes tumor growth through abrogation of transforming growth factor-beta signaling in pancreatic cancer. Ann Surg. 2007;246:61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ritter M, Kattmann D, Teichler S, Hartmann O, Samuelsson MK, Burchert A, Bach JP, Kim TD, Berwanger B, Thiede C, Jager R, Ehninger G, Schafer H, Ueki N, Hayman MJ, Eilers M, Neubauer A. Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia. 2006;20:437–43.

    Article  CAS  PubMed  Google Scholar 

  20. Wang P, Chen Z, Meng ZQ, Luo JM, Lin JH, Zhou ZH, Chen H, Wang K, Shen YH, Liu LM. Ski acts as therapeutic target of qingyihuaji formula in the treatment of SW1990 pancreatic cancer. Integr Cancer Ther. 2010;9:50–8.

    Article  PubMed  Google Scholar 

  21. Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D, Medrano EE. Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res. 2001;61:8074–8.

    CAS  PubMed  Google Scholar 

  22. Rashidian J, Le Scolan E, Ji X, Zhu Q, Mulvihill MM, Nomura D, Luo K. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression. Sci Signal. 2015;8:ra14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen L, Qu C, Chen H, Xu L, Qi Q, Luo J, Wang K, Meng Z, Chen Z, Wang P, Liu L. Chinese herbal medicine suppresses invasion-promoting capacity of cancer-associated fibroblasts in pancreatic cancer. PLoS One. 2014;9:e96177.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cojoc M, Mabert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27.

    Article  CAS  PubMed  Google Scholar 

  25. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  26. Ooi AT, Mah V, Nickerson DW, Gilbert JL, Ha VL, Hegab AE, Horvath S, Alavi M, Maresh EL, Chia D, Gower AC, Lenburg ME, Spira A, Solis LM, Wistuba II, Walser TC, Wallace WD, Dubinett SM, Goodglick L, Gomperts BN. Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer. Cancer Res. 2010;70:6639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hou YC, Chao YJ, Tung HL, Wang HC, Shan YS. Coexpression of CD44-positive/CD133-positive cancer stem cells and CD204-positive tumor-associated macrophages is a predictor of survival in pancreatic ductal adenocarcinoma. Cancer. 2014;120:2766–77.

    Article  CAS  PubMed  Google Scholar 

  28. Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol. 2014;20:2335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verma RK, Yu W, Singh SP, Shankar S, Srivastava RK. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine. 2015;11:2061–70.

    Article  CAS  PubMed  Google Scholar 

  30. Wang F, Ma L, Zhang Z, Liu X, Gao H, Zhuang Y, Yang P, Kornmann M, Tian X, Yang Y. Hedgehog signaling regulates epithelial-mesenchymal transition in pancreatic cancer stem-like cells. J Cancer. 2016;7:408–17.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin EH, Kao YR, Lin CA, Kuo TY, Yang SP, Hsu CF, Chou TY, Ho CC, Wu CW: Hedgehog pathway maintains cell survival under stress conditions, and drives drug resistance in lung adenocarcinoma. Oncotarget 2016

  32. Long B, Wang LX, Zheng FM, Lai SP, Xu DR, Hu Y, Lin DJ, Zhang XZ, Dong L, Long ZJ, Tong XZ, Liu Q. Targeting GLI1 suppresses cell growth and enhances chemosensitivity in CD34+ enriched acute myeloid leukemia progenitor cells. Cell Physiol Biochem. 2016;38:1288–302.

    Article  CAS  PubMed  Google Scholar 

  33. Subramani R, Gonzalez E, Nandy SB, Arumugam A, Camacho F, Medel J, Alabi D, Lakshmanaswamy R. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget. 2016. doi:10.18632/oncotarget.8055.

    PubMed  Google Scholar 

  34. Zhang Y, Liu W, He W, Zhang Y, Deng X, Ma Y, Zeng J, Kou B: Tetrandrine reverses epithelial-mesenchymal transition in bladder cancer by downregulating Gli-1. Int J Oncol 2016

  35. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–51.

    Article  CAS  PubMed  Google Scholar 

  36. Hermann PC, Trabulo SM, Sainz Jr B, Balic A, Garcia E, Hahn SA, Vandana M, Sahoo SK, Tunici P, Bakker A, Hidalgo M, Heeschen C. Multimodal treatment eliminates cancer stem cells and leads to long-term survival in primary human pancreatic cancer tissue xenografts. PLoS One. 2013;8:e66371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deheuninck J, Luo K. Ski and Snon, potent negative regulators of TGF-beta signaling. Cell Res. 2009;19:47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vo BT, Cody B, Cao Y, Khan SA. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-beta)-induced Smad signaling in prostate cancer cells. Carcinogenesis. 2012;33:2054–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem. 1999;274:35269–77.

    Article  CAS  PubMed  Google Scholar 

  40. Wang P, Chen Z, Meng ZQ, Fan J, Luo JM, Liang W, Lin JH, Zhou ZH, Chen H, Wang K, Shen YH, ZD X, Liu LM. Dual role of ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Carcinogenesis. 2009;30:1497–506.

    Article  CAS  PubMed  Google Scholar 

  41. Xie M, Wu X, He C, Zhang J, Zhang J: Ski is silenced by methylation and acts as tumor suppressor in non-small cell lung cancer. Oncotarget 2015

  42. Chen D, Lin Q, Box N, Roop D, Ishii S, Matsuzaki K, Fan T, Hornyak TJ, Reed JA, Stavnezer E, Timchenko NA, Medrano EE. Ski knockdown inhibits human melanoma tumor growth in vivo. Pigment Cell Melanoma Res. 2009;22:761–72.

    Article  CAS  PubMed  Google Scholar 

  43. Javelaud D, van Kempen L, Alexaki VI, Le Scolan E, Luo K, Mauviel A. Efficient TGF-beta/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression. Mol Cancer. 2011;10:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reed JA, Chen D, Lin Q, Medrano EE. Ski is critical for repressing the growth inhibitory function of TGF-beta in human melanoma. Pigment Cell Melanoma Res. 2008;21:494–5 author reply 496-497.

    Article  PubMed  Google Scholar 

  45. Ruiz i Altaba A. Gli proteins and Hedgehog signaling: development and cancer. Trends Genet. 1999;15:418–25.

    Article  CAS  PubMed  Google Scholar 

  46. Ruiz i Altaba A. Therapeutic inhibition of Hedgehog-GLI signaling in cancer: epithelial, stromal, or stem cell targets? Cancer Cell. 2008;14:281–3.

    Article  CAS  PubMed  Google Scholar 

  47. Xie J. Hedgehog signaling pathway: development of antagonists for cancer therapy. Curr Oncol Rep. 2008;10:107–13.

    Article  CAS  PubMed  Google Scholar 

  48. Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D, Liu J, Michael LE, Glick A, Dlugosz AA. Sustained hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev. 2005;19:214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V, Beermann F, Ruiz IAA. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A. 2007;104:5895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, Beyna M, Datta MW, Datta S, Ruiz i, Altaba A. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A. 2004;101:12561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu H, Gu D, Xie J. Clinical implications of hedgehog signaling pathway inhibitors. Chinese journal of cancer. 2011;30:13–26.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hwang JH, Lee SH, Lee KH, Lee KY, Kim H, Ryu JK, Yoon YB, Kim YT. Cathepsin b is a target of Hedgehog signaling in pancreatic cancer. Cancer Lett. 2009;273:266–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Te Liu (Shanghai Geriatric Institute of Chinese Medicine, Shanghai) for experimental and technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Liu.

Additional information

Libin Song and Xiangyuan Chen contributed to the work equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Chen, X., Gao, S. et al. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway. Tumor Biol. 37, 16115–16125 (2016). https://doi.org/10.1007/s13277-016-5461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5461-8

Keywords

Navigation