Skip to main content

Advertisement

Log in

Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion

  • Original Article
  • Published:
Tumor Biology

Abstract

Malignant pleural effusion (MPE) is associated with a poor prognosis in lung cancer. Currently, no effective cure exists for MPE. Chloroquine (CQ) has been demonstrated to induce vascular normalization and inhibit tumor growth. The aim of this study was to assess whether CQ affects MPE. The xenografts mice were divided into normal saline (NS), CQ, or bevacizumab (BE) group. Tumor growth and microvascular density (MVD) were monitored. We explored the effect of CQ on the proliferation, survival, and proangiogenic signaling of tumor cells in vitro. We further evaluated the effects of CQ on the viability, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). A chicken chorioallantoic membrane (CAM) model was used to elucidate the effects of CQ on angiogenesis. Finally, an MPE mouse model were treated by CQ, BE, or NS. The volume of pleural effusion, tumor foci, and MVD was evaluated. CQ therapy group exhibited decreased tumor volume, tumor weight, and MVD in the mouse xenografts. CQ inhibited the proliferation of the tumor cells. However, the expression of vascular endothelial growth factor was not affected. Additionally, CQ inhibited the proliferation, migration, and tube formation of HUVECs and also restrained angiogenesis in the CAM. Western blot showed that CQ might suppress angiogenesis by downregulating p-Akt, Jagged1, and Ang2 in HUVECs. In MPE mice, the volume of the pleural effusion, the number of pleural tumor foci, and the MVD were significantly reduced in the CQ group. Our work demonstrated that CQ played the role of an efficient treatment for MPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heffner JE, Klein JS. Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clin Proc. 2008;83:235–50.

    Article  PubMed  Google Scholar 

  2. Stathopoulos GT. Translational advances in pleural malignancies. Respirology (Carlton, Vic). 2011;16:53–63.

    Article  Google Scholar 

  3. Haas AR, Sterman DH. Novel intrapleural therapies for malignant diseases. Respiration; International Review of Thoracic Diseases. 2012;83:277–92.

    Article  PubMed  Google Scholar 

  4. Stathopoulos GT, Kalomenidis I. Malignant pleural effusion: tumor-host interactions unleashed. Am J Respir Crit Care Med. 2012;186:487–92.

    Article  PubMed  Google Scholar 

  5. Spella M, Giannou AD, Stathopoulos GT. Switching off malignant pleural effusion formation-fantasy or future? Journal of Thoracic Disease. 2015;7:1009–20.

    PubMed  PubMed Central  Google Scholar 

  6. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, Fidler IJ. Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. Am J Pathol. 2000;157:1893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pichelmayer O, Gruenberger B, Zielinski C, Raderer M. Bevacizumab is active in malignant effusion. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2006;17:1853.

    Article  CAS  Google Scholar 

  8. Massarelli E, Onn A, Marom EM, Alden CM, Liu DD, Tran HT, Mino B, Wistuba II, Faiz SA, Bashoura L, Eapen GA, Morice RC, Jack Lee J, Hong WK, Herbst RS, Jimenez CA. Vandetanib and indwelling pleural catheter for non-small-cell lung cancer with recurrent malignant pleural effusion. Clinical Lung Cancer. 2014;15:379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Homewood CA, Warhurst DC, Peters W, Baggaley VC. Lysosomes, ph and the anti-malarial action of chloroquine. Nature. 1972;235:50–2.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Liao Z, Zhang LJ, Xiao HT. The utility of chloroquine in cancer therapy. Curr Med Res Opin. 2015;31:1009–13.

    Article  CAS  PubMed  Google Scholar 

  11. Vezmar M, Georges E. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem Pharmacol. 2000;59:1245–52.

    Article  CAS  PubMed  Google Scholar 

  12. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. 2004;23:2881–90.

    Article  CAS  PubMed  Google Scholar 

  13. Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625:220–33.

    Article  CAS  PubMed  Google Scholar 

  14. Kim EL, Wustenberg R, Rubsam A, Schmitz-Salue C, Warnecke G, Bucker EM, Pettkus N, Speidel D, Rohde V, Schulz-Schaeffer W, Deppert W, Giese A. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro-Oncology. 2010;12:389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.

    Article  CAS  PubMed  Google Scholar 

  16. Lesiak A, Narbutt J, Kobos J, Kordek R, Sysa-Jedrzejowska A, Norval M, Wozniacka A. Systematic administration of chloroquine in discoid lupus erythematosus reduces skin lesions via inhibition of angiogenesis. Clin Exp Dermatol. 2009;34:570–5.

    Article  CAS  PubMed  Google Scholar 

  17. Grimaldi A, Balestrieri ML, D’Onofrio N, Di Domenico G, Nocera C, Lamberti M, Tonini G, Zoccoli A, Santini D, Caraglia M, Pantano F. The synergistic effect of everolimus and chloroquine on endothelial cell number reduction is paralleled by increased apoptosis and reduced autophagy occurrence. PLoS One. 2013;8:e79658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Potvin F, Petitclerc E, Marceau F, Poubelle PE. Mechanisms of action of antimalarials in inflammation: induction of apoptosis in human endothelial cells. Journal of Immunology (Baltimore, Md: 1950). 1997;158:1872–9.

    CAS  Google Scholar 

  19. Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, Quaegebeur A, Schoors S, Georgiadou M, Wouters J, Vinckier S, Vankelecom H, Garmyn M, Vion AC, Radtke F, Boulanger C, Gerhardt H, Dejana E, Dewerchin M, Ghesquiere B, Annaert W, Agostinis P, Carmeliet P. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26:190–206.

    Article  CAS  PubMed  Google Scholar 

  20. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.

    Article  CAS  PubMed  Google Scholar 

  21. Takanami I. Overexpression of Ang-2 mRNA in non-small cell lung cancer: association with angiogenesis and poor prognosis. Oncol Rep. 2004;12:849–53.

    CAS  PubMed  Google Scholar 

  22. Bose D, Meric-Bernstam F, Hofstetter W, Reardon DA, Flaherty KT, Ellis LM. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. The Lancet Oncology. 2010;11:373–82.

    Article  CAS  PubMed  Google Scholar 

  23. Hajitou A, Grignet C, Devy L, Berndt S, Blacher S, Deroanne CF, Bajou K, Fong T, Chiang Y, Foidart JM, Noel A. The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2002;16:1802–4.

    CAS  Google Scholar 

  24. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jain RK. Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nature Reviews Cancer. 2008;8:309–16.

    Article  CAS  PubMed  Google Scholar 

  26. YL H, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, Aghi MK. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 2012;72:1773–83.

    Article  Google Scholar 

  27. Mazure NM, Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol. 2010;22:177–80.

    Article  CAS  PubMed  Google Scholar 

  28. Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21:66–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417–27.

    Article  CAS  PubMed  Google Scholar 

  30. Giannou AD, Marazioti A, Spella M, Kanellakis NI, Apostolopoulou H, Psallidas I, Prijovich ZM, Vreka M, Zazara DE, Lilis I, Papaleonidopoulos V, Kairi CA, Patmanidi AL, Giopanou I, Spiropoulou N, Harokopos V, Aidinis V, Spyratos D, Teliousi S, Papadaki H, Taraviras S, Snyder LA, Eickelberg O, Kardamakis D, Iwakura Y, Feyerabend TB, Rodewald HR, Kalomenidis I, Blackwell TS, Agalioti T, Stathopoulos GT. Mast cells mediate malignant pleural effusion formation. J Clin Invest. 2015;125:2317–34.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin H, Tong ZH, Xu QQ, Wu XZ, Wang XJ, Jin XG, Ma WL, Cheng X, Zhou Q, Shi HZ. Interplay of th1 and th17 cells in murine models of malignant pleural effusion. Am J Respir Crit Care Med. 2014;189:697–706.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20140736), the Standard Diagnosis and Treatment Program of Key Disease in Jiangsu Province (No. BL2013026), and the National Natural Science Foundation of China (No. 81370172).

Author contributions

Qian Li participated in the experimental design and carried out animal surgeries; Li-hong Ma worked on the histological and immunohistochemistry staining, analyzed the data, and drafted the manuscript. Chen-hui Ma contributed to conception of the study, experimental design, analyzed the data and drafted the manuscript. Dong-mei Yuan helped with the animal surgeries, histological staining, and drafting of the manuscript. Tang-feng Lv contributed to the study’s conception, analyzed the data, and revised the manuscript. Ya-fang Liu participated in designing the experiment and revising the manuscript. Yong Song contributed to conception of the study, experimental design, analyzed the data, and revised the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Song.

Ethics declarations

All animal experiments were conducted in accordance with the guidelines approved by the Institute Animal Care and Use Committee of Jinling Hospital.

Conflicts of interest

None.

Additional information

Qian Li and Dong-mei Yuan contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Yuan, Dm., Ma, Lh. et al. Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion. Tumor Biol. 37, 16249–16258 (2016). https://doi.org/10.1007/s13277-016-5441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5441-z

Keywords

Navigation