Skip to main content

Advertisement

Log in

IGF2 knockdown in two colorectal cancer cell lines decreases survival, adhesion and modulates survival-associated genes

  • Original Article
  • Published:
Tumor Biology

Abstract

Increased expression of insulin-like growth factor 2 (IGF2) is found in tumors of colorectal cancer (CRC) patients exhibiting a gained region on chromosome 11q15 and is implicated in poor patient survival. This study analyzes in vitro phenotypic- and gene expression changes associated with IGF2 shRNA-mediated knockdown. Initially, doxycycline inducible IGF2 knockdown cell lines were generated in the CRC cell lines SW480 and LS174T. The cells were analyzed for changes in proliferation, cell cycle, apoptosis, adhesion, and invasion. Expression profiling analysis was performed, and, for a subset of the identified genes, expression was validated by qRT-PCR and Western blot. IGF2 knockdown inhibited cell proliferation in both cell lines induced G1 cell cycle blockade and decreased adhesion to several extracellular matrix proteins. Knockdown of IGF2 did not alter invasiveness in SW480 cells, while a slight increase in apoptosis was seen only in the LS174T cell line. Knockdown of IGF2 in SW480 deregulated 58 genes, several of which were associated with proliferation and cell-cell/cell-ECM contacts. A subset of these genes, including CDK2, YAP1, and BIRC5 (Survivin), are members of a common network. This study supports the concept of direct autocrine/paracrine tumor cell activation through IGF2 and a shows role of IGF2 in CRC proliferation, adhesion and, to a limited extent, apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brouwer-Visser J, Huang GS. IGF2 signaling and regulation in cancer. Cytokine Growth Factor Rev. 2015;26:371–7.

    Article  CAS  PubMed  Google Scholar 

  2. Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20:R321–39.

    Article  CAS  PubMed  Google Scholar 

  3. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20–47.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao RH, DeCoteau JF, Geyer CR, Gao M, Cui HM, Casson AG. Loss of imprinting of the insulin-like growth factor II (IGF2) gene in esophageal normal and adenocarcinoma tissues. Carcinogenesis. 2009;30:2117–22.

    Article  CAS  PubMed  Google Scholar 

  5. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer. 2014;14:329–41.

    Article  CAS  PubMed  Google Scholar 

  6. Varewijck AJ, Janssen JAMJ. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr Relat Cancer. 2012;19:F63–75.

    Article  CAS  PubMed  Google Scholar 

  7. LeRoith D, Roberts CT. The insulin-like growth factor system and cancer. Cancer Lett. 2003;195:127–37.

    Article  CAS  PubMed  Google Scholar 

  8. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta Rev Cancer. 1855;2015:104–21.

    Google Scholar 

  9. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  10. Petley T, Graff K, Jiang W, Yang H, Florini J. Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses. Horm Metab Res. 1999;31:70–6.

    Article  CAS  PubMed  Google Scholar 

  11. Bergman D, Halje M, Nordin M, Engstrom W. Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology. 2013;59:240–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kawamoto K, Onodera H, Kondo S, Kan S, Ikeuchi D, Maetani S, Imamura M. Expression of insulin-like growth factor-2 can predict the prognosis of human colorectal cancer patients: correlation with tumor progression, proliferative activity and survival. Oncology. 1998;55:242–8.

    Article  CAS  PubMed  Google Scholar 

  13. Stange DE, Engel F, Longerich T, Koo BK, Koch M, Delhomme N, Aigner M, Toedt G, Schirmacher P, Lichter P, Weitz J, Radlwimmer B. Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut. 2010;59:1236–44.

    Article  CAS  PubMed  Google Scholar 

  14. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF, Reid JG, Santibanez J, Shinbrot E, Trevino LR, Wu YQ, Wang M, Gunaratne P, Donehower LA, Creighton CJ, Wheeler DA, Gibbs RA, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A, Stojanov P, McKenna A, Lander ES, Gabriel S, Getz G, Ding L, Fulton RS, Koboldt DC, Wylie T, Walker J, Dooling DJ, Fulton L, Delehaunty KD, Fronick CC, Demeter R, Mardis ER, Wilson RK, Chu A, Chun HJE, Mungall AJ, Pleasance E, Robertson AG, Stoll D, Balasundaram M, Birol I, Butterfield YSN, Chuah E, Coope RJN, Dhalla N, Guin R, Hirst C, Hirst M, Holt RA, Lee D, Li HI, Mayo M, Moore RA, Schein JE, Slobodan JR, Tam A, Thiessen N, Varhol R, Zeng T, Zhao Y, Jones SJM, Marra MA, Bass AJ, Ramos AH, Saksena G, Cherniack AD, Schumacher SE, Tabak B, Carter SL, Pho NH, Nguyen H, Onofrio RC, Crenshaw A, Ardlie K, Beroukhim R, Winckler W, Getz G, Meyerson M, Protopopov A, Zhang J, Hadjipanayis A, Lee E, Xi R, Yang L, Ren X, Zhang H, Sathiamoorthy N, Shukla S, Chen PC, Haseley P, Xiao Y, Lee S, Seidman J, Chin L, Park PJ, Kucherlapati R, Auman JT, Hoadley KA, Du Y, Wilkerson MD, Shi Y, Liquori C, Meng S, Li L, Turman YJ, Topal MD, Tan D, Waring S, Buda E, Walsh J, Jones CD, Mieczkowski PA, Singh D, Wu J, Gulabani A, Dolina P, Bodenheimer T, Hoyle AP, Simons JV, Soloway M, Mose LE, Jefferys SR, Balu S, O'Connor BD, Prins JF, Chiang DY, Hayes DN, Perou CM, Hinoue T, Weisenberger DJ, Maglinte DT, Pan F, Berman BP, Van den Berg DJ, Shen H, Triche Jr T, Baylin SB, Laird PW, Getz G, Noble M, Voet D, Saksena G, Gehlenborg N, DiCara D, Zhang J, Zhang H, Wu CJ, Liu SY, Shukla S, Lawrence MS, Zhou L, Sivachenko A, Lin P, Stojanov P, Jing R, Park RW, Nazaire MD, Robinson J, Thorvaldsdottir H, Mesirov J, Park PJ, Chin L, Thorsson V, Reynolds SM, Bernard B, Kreisberg R, Lin J, Iype L, Bressler R, Erkkila T, Gundapuneni M, Liu Y, Norberg A, Robinson T, Da Y, Zhang W, Shmulevich I, De Ronde JJ, Schultz N, Cerami E, Ciriello G, Goldberg AP, Gross B, Jacobsen A, Gao J, Kaczkowski B, Sinha R, Aksoy BA, Antipin Y, Reva B, Shen R, Taylor BS, Chan TA, Ladanyi M, Sander C, Akbani R, Zhang N, Broom BM, Casasent T, Unruh A, Wakefield C, Hamilton SR, Cason RC, Baggerly KA, Weinstein JN, Haussler D, Benz CC, Stuart JM, Benz SC, Sanborn JZ, Vaske CJ, Zhu J, Szeto C, Scott GK, Yau C, Ng S, Goldstein T, Ellrott K, Collisson E, Cozen AE, Zerbino D, Wilks C, Craft B, Spellman P, Penny R, Shelton T, Hatfield M, Morris S, Yena P, Shelton C, Sherman M, Paulauskis J, Gastier-Foster JM, Bowen J, Ramirez NC, Black A, Pyatt R, Wise L, White P, Bertagnolli M, Brown J, Chan TA, Chu GC, Czerwinski C, Denstman F. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  15. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006;124:1283–98.

    Article  CAS  PubMed  Google Scholar 

  16. Wiederschain D, Wee S, Chen L, Loo A, Yang GZ, Huang A, Chen Y, Caponigro G, Yao YM, Lengauer C, Sellers WR, Benson JD. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle. 2009;8:498–504.

    Article  CAS  PubMed  Google Scholar 

  17. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, DeBeaumont R, Stegmeier F, Yao YM, Lengauer C. PTEN-deficient cancers depend on PIK3CB. Proceedings of the National Academy of Sciences of the United States of America 2008; 105:13057–13062.

  18. Rogers MA, Kalter V, Marcias G, Zapatka M, Barbus S, Lichter P. CITED4 gene silencing in colorectal cancer cells modulates adherens/tight junction gene expression and reduces cell proliferation. J Cancer Res Clin Oncol. 2016;142:225–37.

    Article  CAS  PubMed  Google Scholar 

  19. Kallio MA, Tuimala JT, Hupponen T, Klemela P, Gentile M, Scheinin I, Koski M, Kaki J, Korpelainen EI. Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics. 2011;12:507.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M, Burdett T, Megy K, Pilicheva E, Rustici G, Tikhonov A, Parkinson H, Petryszak R, Sarkans U, Brazma A. Array express update—simplifying data submissions. Nucleic Acids Res. 2015;43:D1113–6.

    Article  PubMed  Google Scholar 

  21. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  22. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. Lancet. 2005;365:153–65.

    Article  PubMed  Google Scholar 

  23. Leibovitz A, Stinson JC, McCombs III WB, McCoy CE, Mazur KC, Mabry ND. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976;36:4562–9.

    CAS  PubMed  Google Scholar 

  24. Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI, Kahan BD. Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro. 1976;12:180–91.

    Article  CAS  PubMed  Google Scholar 

  25. Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsoskas M, Stamp GWH, Stetler-Stevenson WG. Validation of a model of colon cancer progression. J Pathol. 2000;192:446–54.

    Article  CAS  PubMed  Google Scholar 

  26. Hamada K, Monnai M, Kawai K, Nishime C, Kito C, Miyazaki N, Ohnishi Y, Nakamura M, Suemizu H. Liver metastasis models of colon cancer for evaluation of drug efficacy using NOD/Shi-scid IL2R gamma(null) (NOG) mice. Int J Oncol. 2008;32:153–9.

    CAS  PubMed  Google Scholar 

  27. Yang SY, Sales KM, Fuller B, Seifalian AM, Winslet MC. Apoptosis and colorectal cancer: implications for therapy. Trends Mol Med. 2009;15:225–33.

    Article  CAS  PubMed  Google Scholar 

  28. Wang LJ, Shi SJ, Guo ZY, Zhang X, Han SX, Yang AG, Wen WH, Zhu Q. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One. 2013;8.

  29. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC. Beta-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151:1457–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.

    Article  PubMed  Google Scholar 

  31. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.

    Article  CAS  PubMed  Google Scholar 

  32. Lahm H, Suardet L, Laurent PL, Fischer JR, Ceyhan A, Givel JC, Odartchenko N. Growth-regulation and co-stimulation of human colorectal-cancer cell-lines by insulin-like growth factor-I, factor-II and transforming growth factor-alpha. Br J Cancer. 1992;65:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dupont J, Pierre A, Froment P, Moreau C. The insulin-like growth factor axis in cell cycle progression. Horm Metab Res. 2003;35:740–50.

    Article  CAS  PubMed  Google Scholar 

  34. Brouwer-Visser J, Lee J, McCullagh K, Cossio MJ, Wang YH, Huang GS. Insulin-like growth factor 2 silencing restores taxol sensitivity in drug resistant ovarian cancer. PLoS One. 2014;9.

  35. Guillaud-Bataille M, Ragazzon B, de Reynies A, Chevalier C, Francillard I, Barreau O, Steunou V, Guillemot J, Tissier F, Rizk-Rabin M, Rene-Corail F, Al Ghuzlan A, Assie G, Bertagna X, Baudin E, Le Bouc Y, Bertherat J, Clauser E. IGF2 promotes growth of adrenocortical carcinoma cells, but its overexpression does not modify phenotypic and molecular features of adrenocortical carcinoma. PLoS One. 2014;9.

  36. Yao XM, Hu JF, Daniels M, Shiran H, Zhou XJ, Yan HF, Lu HQ, Zeng ZL, Wang QX, Li T, Hoffman AR. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J Clin Invest. 2003;111:265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leng SL, Leeding KS, Whitehead RH, Bach LA. Insulin-like growth factor (IGF)-binding protein-6 inhibits IGF-II-induced but not basal proliferation and adhesion of LIM 1215 colon cancer cells. Mol Cell Endocrinol. 2001;174:121–7.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang D, Samani AA, Brodt P. The role of the IGF-I receptor in the regulation of matrix metalloproteinases, tumor invasion and metastasis. Horm Metab Res. 2003;35:802–8.

    Article  CAS  PubMed  Google Scholar 

  39. Chen YW, Boyartchuk V, Lewis BC. Differential roles of insulin-like growth factor receptor- and insulin receptor-mediated signaling in the phenotypes of hepatocellular carcinoma cells. Neoplasia. 2009;11:835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang M, Zhao H, Luo F, Luo S, Shi W. IGF-II inhibitory DNAzymes inhibit the invasion and migration of hepatocarcinoma cells. Biotechnol Lett. 2011;33:911–7.

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta. 1826;2012:23–31.

    Google Scholar 

  42. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392:190–3.

    Article  CAS  PubMed  Google Scholar 

  43. Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene. 2001;20:4942–50.

    Article  CAS  PubMed  Google Scholar 

  44. Gallagher EM, O'Shea DM, Fitzpatrick P, Harrison M, Gilmartin B, Watson JA, Clarke T, Leonard MO, McGoldrick A, Meehan M, Watson C, Furlong F, O'Kelly P, Fitzpatrick JM, Dervan PA, O'Grady A, Kay EW, McCann A. Recurrence of urothelial carcinoma of the bladder: a role for insulin-like growth factor-II loss of imprinting and cytoplasmic E-cadherin immunolocalization. Clin Cancer Res. 2008;14:6829–38.

    Article  CAS  PubMed  Google Scholar 

  45. Hofer MD, Browne TJ, He L, Skotheim RI, Lothe RA, Rubin MA. Identification of two molecular groups of seminomas by using expression and tissue microarrays. Clin Cancer Res. 2005;11:5722–9.

    Article  CAS  PubMed  Google Scholar 

  46. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–91.

    Article  CAS  PubMed  Google Scholar 

  47. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  PubMed  Google Scholar 

  48. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet. 2003;35:25–31.

    Article  CAS  PubMed  Google Scholar 

  49. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P. Cdk2 knockout mice are viable. Curr Biol. 2003;13:1775–85.

    Article  CAS  PubMed  Google Scholar 

  50. Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell. 2003;3:233–45.

    Article  CAS  PubMed  Google Scholar 

  51. Altieri DC. Survivin—the inconvenient IAP. Semin Cell Dev Biol. 2015;39:91–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh SK, Tan QW, Brito C, De Leon M, Garberoglio C, De Leon D. Differential insulin-like growth factor II (IGF-II) expression: a potential role for breast cancer survival disparity. Growth Hormon IGF Res. 2010;20:162–70.

    Article  Google Scholar 

  53. Chirco R, Liu XW, Jung KK, Kim HR. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev. 2006;25:99–113.

    Article  CAS  PubMed  Google Scholar 

  54. Chao W, D'Amore PA. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008;19:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maschietto M, Trape AP, Piccoli FS, Ricca TI, Dias AA, Coudry RA, Galante PA, Torres C, Fahhan L, Lourenco S, Grundy PE, de Camargo B, de Souza S, Neves EJ, Soares FA, Brentani H, Carraro DM. Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms’ tumor onset. Cell Death Dis. 2011;2:e224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dechiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor-II gene disrupted by targeting. Nature. 1990;345:78–80.

    Article  CAS  PubMed  Google Scholar 

  57. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17:2054–60.

    Article  CAS  PubMed  Google Scholar 

  58. Strassburger K, Tiebe M, Pinna F, Breuhahn K, Teleman AA. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol. 2012;367:187–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the microarray unit of the DKFZ Genomics and Proteomics Core Facility for providing the Illumina Whole-Genome Expression Beadchips and related services. We also wish to thank the German Research Foundation who supported this project (Peter Lichter, LI 406/12-2; Martin Schneider, SCHN 947/2) in the framework of the Clinical Research Group KFO-227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Rogers.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Supplementary Table 1

Primers used for qRT-PCR analysis. (PDF 29 kb)

Supplementary Table 2

Antibodies used for Western blot analysis. (PDF 29 kb)

Supplementary Table 3

Microarray data for significantly deregulated genes at day 3 and 5. P. adjust, adjusted p-value; FC, fold change. (XLSX 22 kb)

Supplementary Table 4

Patient data. (DOCX 14 kb)

Supplementary Fig 1

Analysis of apoptosis in the IGF2–1 shRNA cell lines. a. Annexin-V 7-AAD measurements in the SW480 cell line (day 4). b. AnnexinV/7-AAD measurements in the LS174T cell line (day 4). c. Activated caspase-3 measurements in the LS174T cell line (day 4). *, p-values. (EPS 113 kb)

Supplementary Fig 2

a. Prediction of phenotype based on genes associated with specific terms in the Ingenuity Disease and Function database. Increased/decreased relate to the term named in the specific column (i.e. increased proliferation). Note Z-scores. b. Network analysis of a subset of the microarray data. Green, downregulated vs controls; Red, upregulated vs controls. Solid arrows, activates the affected gene; hatched arrows, inhibits the affected gene. (EPS 16932 kb)

Supplementary Fig 3

Evaluation of YAP1 overexpression in SW480 cells and in the IGF2–1 shRNA (tet-on) permanent cell line. a, b. SW480 cells. a. qRT-PCR analysis of YAP1 3 days after transfection with the YAP1 overexpression vector. b. Western blot analysis of YAP1 (similar experiment as a). c-e. IGF2–1 shRNA permanent cell line and controls. c-d. Analysis of IGF2 and YAP1 mRNA expression at day 3 after transfection with YAP1. e. Analysis of cell proliferation at day 6 after transfection with YAP1. (EPS 18855 kb)

ESM 1

(PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, M.A., Kalter, V., Strowitzki, M. et al. IGF2 knockdown in two colorectal cancer cell lines decreases survival, adhesion and modulates survival-associated genes. Tumor Biol. 37, 12485–12495 (2016). https://doi.org/10.1007/s13277-016-5115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5115-x

Keywords

Navigation