Skip to main content

Advertisement

Log in

CAF cellular glycolysis: linking cancer cells with the microenvironment

  • Review
  • Published:
Tumor Biology

Abstract

Cancers have long being hallmarked as cells relying heavily on their glycolysis for energy generation in spite of having functional mitochondria. The metabolic status of the cancer cells have been revisited time and again to get better insight into the overall carcinogenesis process which revealed the apparent crosstalks between the cancer cells with the fibroblasts present in the tumour microenvironment. This review focuses on the mechanisms of transformations of normal fibroblasts to cancer-associated fibroblasts (CAF), the participation of the CAF in tumour progression with special interest to the role of CAF cellular glycolysis in the overall tumorigenesis. The fibroblasts, when undergoes the transformation process, distinctly switches to a more glycolytic phenotype in order to provide the metabolic intermediates necessary for carrying out the mitochondrial pathways of ATP generation in cancer cells. This review will also discuss the molecular mechanisms responsible for this metabolic make over promoting glycolysis in CAF cells. A thorough investigation of the pathways and molecules involved will not only help in understanding the process of activation and metabolic reprogramming in CAF cells but also might open up new targets for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    CAS  PubMed  Google Scholar 

  2. Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumour stroma. Exp Cell Res. 2010;316:1324–31.

    CAS  PubMed  Google Scholar 

  3. Fang H, Declerck YA. Targeting the tumour microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 2013;73:4965–77.

    CAS  PubMed  Google Scholar 

  4. Li X, Ma Q, Xu Q, Duan W, Lei J, Wu E. Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Des. 2012;18:2404–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Nikhely N, Larzabal L, Seeger W, Calvo A, Savai R. Tumour-stromal interactions in lung cancer: novel candidate targets for therapeutic intervention. Expert Opin Investig Drugs. 2012;21:1107–22.

    CAS  PubMed  Google Scholar 

  6. Tchou J, Conejo-Garcia J. Targeting the tumour stroma as a novel treatment strategy for breast cancer: shifting from the neoplastic cell-centric to a stroma-centric paradigm. Adv Pharmacol. 2012;65:45–61.

    CAS  PubMed  Google Scholar 

  7. De Veirman K, Rao L, De Bruyne E, Menu E, Van Valckenborgh E, Van Riet I, et al. Cancer associated fibroblasts and tumour growth: focus on multiple myeloma. Cancers (Basel). 2014;6:1363–81.

    Google Scholar 

  8. Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316:2713–22.

    PubMed  Google Scholar 

  9. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumour-promoting cell type. Cell Cycle. 2006;5:1597–601.

    CAS  PubMed  Google Scholar 

  10. Witz IP. The tumour microenvironment: the making of a paradigm. Cancer Microenviron. 2009;2 Suppl 1:9–17.

    PubMed  PubMed Central  Google Scholar 

  11. Bhome R, Bullock MD, Al Saihati HA, Goh RW, Primrose JN, Sayan AE, et al. A top-down view of the tumour microenvironment: structure, cells and signaling. Front Cell Dev Biol. 2015;3:33.

    PubMed  PubMed Central  Google Scholar 

  12. Vannucci L. Stroma as an active player in the development of the tumour microenvironment. Cancer Microenviron. 2015;8(3):159–66.

  13. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9:628–38.

    CAS  PubMed  Google Scholar 

  14. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumour stroma. Cell Cycle. 2009;8:3984–4001.

    CAS  PubMed  Google Scholar 

  15. Chiarugi P, Cirri P. Metabolic exchanges within tumour microenvironment. Cancer Lett. 2015. doi:10.1016/j.canlet.2015.10.027

  16. Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, et al. Glycolytic cancer associated fibroblasts promote breast cancer tumour growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9:2412–22.

    CAS  PubMed  Google Scholar 

  17. Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, Witkiewicz AK, Birbe R, Howell A, et al. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumour growth. Cancer Biol Ther. 2011;12:1101–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pacini N, Borziani F. Cancer stem cell theory and the Warburg effect, two sides of the same coin? Int J Mol Sci. 2014;15:8893–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanita P, Capulli M, Teti A, Galatioto GP, Vicentini C, Chiarugi P, et al. Tumour-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer. 2014;14:154.

    PubMed  PubMed Central  Google Scholar 

  20. Gonzalez CD, Alvarez S, Ropolo A, Rosenzvit C, Bagnes MF, Vaccaro MI. Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed Res Int. 2014;2014:926729.

    PubMed  PubMed Central  Google Scholar 

  21. Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumour microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol. 2014;92:43–54.

    CAS  PubMed  Google Scholar 

  22. Martinez-Outschoorn U, Sotgia F, Lisanti MP. Tumour microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin Oncol. 2014;41:195–216.

    CAS  PubMed  Google Scholar 

  23. Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013;22:407–8. 10–12.

    CAS  PubMed  Google Scholar 

  24. Darby IA, Laverdet B, Bonte F, Desmouliere A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.

    PubMed  PubMed Central  Google Scholar 

  25. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283–9.

    CAS  PubMed  Google Scholar 

  26. Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen. 2003;11:504–9.

    PubMed  Google Scholar 

  27. Wagner S, Hussain MZ, Hunt TK, Bacic B, Becker HD. Stimulation of fibroblast proliferation by lactate-mediated oxidants. Wound Repair Regen. 2004;12:368–73.

    PubMed  Google Scholar 

  28. Anderson GR, Stoler DL, Scarcello LA. Normal fibroblasts responding to anoxia exhibit features of the malignant phenotype. J Biol Chem. 1989;264:14885–92.

    CAS  PubMed  Google Scholar 

  29. Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 2007;67:4244–53.

    CAS  PubMed  Google Scholar 

  30. Casey TM, Eneman J, Crocker A, White J, Tessitore J, Stanley M, et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumour cells: a population study. Breast Cancer Res Treat. 2008;110:39–49.

    CAS  PubMed  Google Scholar 

  31. Rosenthal E, McCrory A, Talbert M, Young G, Murphy-Ullrich J, Gladson C. Elevated expression of TGF-beta1 in head and neck cancer-associated fibroblasts. Mol Carcinog. 2004;40:116–21.

    CAS  PubMed  Google Scholar 

  32. Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 2015;10:1335–48.

    PubMed  Google Scholar 

  33. Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol. 2013;66:129–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dvorak HF. Tumours: wounds that do not heal. Similarities between tumour stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    CAS  PubMed  Google Scholar 

  35. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250:273–83.

    CAS  PubMed  Google Scholar 

  36. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech. 2010;43:146–55.

    PubMed  Google Scholar 

  37. Yamaguchi H, Sakai R. Direct interaction between carcinoma cells and cancer associated fibroblasts for the regulation of cancer invasion. Cancers (Basel). 2015;7:2054–62.

    Google Scholar 

  38. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumour growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    CAS  PubMed  Google Scholar 

  39. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci U S A. 2009;106:3372–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen S, Niu Y, Yeh S, Chang C. BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. Int J Oncol. 2015;47:719–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, et al. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol. 2014;16:889–901.

    CAS  PubMed  Google Scholar 

  42. Kinoshita H, Hirata Y, Nakagawa H, Sakamoto K, Hayakawa Y, Takahashi R, et al. Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis. PLoS One. 2013;8:e60914.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2015;54:554–65.

    CAS  PubMed  Google Scholar 

  44. Erez N, Glanz S, Raz Y, Avivi C, Barshack I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumours. Biochem Biophys Res Commun. 2013;437:397–402.

    CAS  PubMed  Google Scholar 

  45. Lin ZY, Chuang WL. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts. Kaohsiung J Med Sci. 2013;29:312–8.

    CAS  PubMed  Google Scholar 

  46. Arshad A, Chung WY, Steward W, Metcalfe MS, Dennison AR. Reduction in circulating pro-angiogenic and pro-inflammatory factors is related to improved outcomes in patients with advanced pancreatic cancer treated with gemcitabine and intravenous omega-3 fish oil. HPB (Oxford). 2013;15:428–32.

    Google Scholar 

  47. Ando M, Uehara I, Kogure K, Asano Y, Nakajima W, Abe Y, et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch. 2010;77:97–105.

    CAS  PubMed  Google Scholar 

  48. Lee KW, Yeo SY, Sung CO, Kim SH. Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res. 2015;75:73–85.

    CAS  PubMed  Google Scholar 

  49. Khan MA, Chen HC, Zhang D, Fu J. Twist: a molecular target in cancer therapeutics. Tumour Biol. 2013;34:2497–506.

    CAS  PubMed  Google Scholar 

  50. Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME, et al. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2012;2:1100–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumour microenvironment. Cell Res. 2015;25:588–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeng Z, Hu P, Tang X, Zhang H, Du Y, Wen S, et al. Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014;30:1071–5.

    CAS  PubMed  Google Scholar 

  53. Sun P, Hu JW, Xiong WJ, Mi J. miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 2014;15:4245–50.

    PubMed  Google Scholar 

  54. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumour progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.

    CAS  PubMed  Google Scholar 

  55. Li H, Zhang J, Chen SW, Liu LL, Li L, Gao F, et al. Cancer-associated fibroblasts provide a suitable microenvironment for tumour development and progression in oral tongue squamous cancer. J Transl Med. 2015;13:198.

    PubMed  PubMed Central  Google Scholar 

  56. Bruzzese F, Hagglof C, Leone A, Sjoberg E, Roca MS, Kiflemariam S, et al. Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res. 2014;74:3408–17.

    CAS  PubMed  Google Scholar 

  57. Teichgraber V, Monasterio C, Chaitanya K, Boger R, Gordon K, Dieterle T, et al. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumour progression in vitro. Adv Med Sci. 2015;60:264–72.

    PubMed  Google Scholar 

  58. Schwarz-Cruz YCA, Espinosa M, Maldonado V, Melendez-Zajgla J. Advances in the knowledge of breast cancer stem cells. A review. Histol Histopathol. 2015;0:11718.

    Google Scholar 

  59. Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. Pharmacol Ther. 2016;158:71–90.

  60. Bertolini G, D’Amico L, Moro M, Landoni E, Perego P, Miceli R, et al. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM- lung cancer-initiating cells sustain tumour dissemination and correlate with poor prognosis. Cancer Res. 2015;75:3636–49.

    CAS  PubMed  Google Scholar 

  61. Peiris-Pages M, Sotgia F, Lisanti MP. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728–45.

    PubMed  PubMed Central  Google Scholar 

  62. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    CAS  PubMed  Google Scholar 

  63. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    CAS  PubMed  Google Scholar 

  64. Charafe-Jauffret E, Ginestier C, Birnbaum D. Breast cancer stem cells: tools and models to rely on. BMC Cancer. 2009;9:202.

    PubMed  PubMed Central  Google Scholar 

  65. Oliveira LR, Jeffrey SS, Ribeiro-Silva A. Stem cells in human breast cancer. Histol Histopathol. 2010;25:371–85.

    CAS  PubMed  Google Scholar 

  66. Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016;107:5–11.

    CAS  PubMed  Google Scholar 

  67. Jiang R, Niu X, Huang Y, Wang X. β-Catenin is important for cancer stem cell generation and tumorigenic activity in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai). 2016;48(3):229–37.

  68. Jiang Z, Hao Y, Ding X, Zhang Z, Liu P, Wei X, et al. The effects and mechanisms of SLC34A2 on tumorigenicity in human non-small cell lung cancer stem cells. Tumour Biol. 2016. doi:10.1007/s13277-016-4928-y

  69. Inoue H, Takahashi H, Hashimura M, Eshima K, Akiya M, Matsumoto T, et al. Cooperation of Sox4 with beta-catenin/p300 complex in transcriptional regulation of the Slug gene during divergent sarcomatous differentiation in uterine carcinosarcoma. BMC Cancer. 2015;16:53.

    Google Scholar 

  70. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    CAS  PubMed  Google Scholar 

  71. Yang Z, Zhao T, Liu H, Zhang L. Ginsenoside Rh2 inhibits hepatocellular carcinoma through beta-catenin and autophagy. Sci Rep. 2016;6:19383.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li M, Hale JS, Rich JN, Ransohoff RM, Lathia JD. Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. Trends Neurosci. 2012;35:619–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Khorramdelazad H, Bagheri V, Hassanshahi G, Zeinali M, Vakilian A. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. J Neuroimmunol. 2016;290:70–5.

    CAS  PubMed  Google Scholar 

  74. Shan S, Lv Q, Zhao Y, Liu C, Sun Y, Xi K, et al. Wnt/beta-catenin pathway is required for epithelial to mesenchymal transition in CXCL12 over expressed breast cancer cells. Int J Clin Exp Pathol. 2015;8:12357–67.

    PubMed  PubMed Central  Google Scholar 

  75. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    CAS  PubMed  Google Scholar 

  76. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med. 2003;167:1676–86.

    PubMed  Google Scholar 

  77. Mukherjee D, Zhao J. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res. 2013;3:46–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumour-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010;17:135–47.

    CAS  PubMed  Google Scholar 

  79. Gorchs L, Hellevik T, Bruun JA, Camilio KA, Al-Saad S, Stuge TB, et al. Cancer-associated fibroblasts from lung tumours maintain their immunosuppressive abilities after high-dose irradiation. Front Oncol. 2015;5:87.

    PubMed  PubMed Central  Google Scholar 

  80. Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumour microenvironment and progression. Trends Immunol. 2010;31:220–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, et al. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumour microenvironment. Oncotarget. 2016;7(4):4122–41.

  82. Bagordakis E, Sawazaki-Calone I, Macedo CC, Carnielli CM, de Oliveira CE, Rodrigues PC, et al. Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures. Tumour Biol. 2016. doi:10.1007/s13277-015-4629-y

  83. Chen ZY, Wang PW, Shieh DB, Chiu KY, Liou YM. Involvement of gelsolin in TGF-beta 1 induced epithelial to mesenchymal transition in breast cancer cells. J Biomed Sci. 2015;22:90.

    PubMed  PubMed Central  Google Scholar 

  84. Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72:66–75.

    CAS  PubMed  Google Scholar 

  85. Orr B, Grace OC, Brown P, Riddick AC, Stewart GD, Franco OE, et al. Reduction of pro-tumorigenic activity of human prostate cancer-associated fibroblasts using Dlk1 or SCUBE1. Dis Model Mech. 2013;6:530–6.

    CAS  PubMed  Google Scholar 

  86. Hassona Y, Cirillo N, Heesom K, Parkinson EK, Prime SS. Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br J Cancer. 2014;111:1230–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, et al. TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013;73:5016–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nagura M, Matsumura N, Baba T, Murakami R, Kharma B, Hamanishi J, et al. Invasion of uterine cervical squamous cell carcinoma cells is facilitated by locoregional interaction with cancer-associated fibroblasts via activating transforming growth factor-beta. Gynecol Oncol. 2015;136:104–11.

    CAS  PubMed  Google Scholar 

  89. Maller O, DuFort CC, Weaver VM. YAP forces fibroblasts to feel the tension. Nat Cell Biol. 2013;15:570–2.

    CAS  PubMed  Google Scholar 

  90. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    CAS  PubMed  Google Scholar 

  91. Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res. 2009;7:1438–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012;31:1985–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z, et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 2002;62:5881–7.

    CAS  PubMed  Google Scholar 

  94. Bagui S, Ray M, Ray S. Glyceraldehyde-3-phosphate dehydrogenase from Ehrlich ascites carcinoma cells its possible role in the high glycolysis of malignant cells. Eur J Biochem. 1999;262:386–95.

    CAS  PubMed  Google Scholar 

  95. Patra S, Ghosh S, Bera S, Roy A, Ray S, Ray M. Molecular characterization of tumor associated glyceraldehyde-3-phosphate dehydrogenase. Biochemistry (Mosc). 2009;74:717–27.

    CAS  Google Scholar 

  96. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94:6658–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science. 2006;312:1650–3.

    CAS  PubMed  Google Scholar 

  98. Bonuccelli G, Avnet S, Grisendi G, Salerno M, Granchi D, Dominici M, et al. Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget. 2014;5:7575–88.

    PubMed  PubMed Central  Google Scholar 

  99. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle. 2010;9:2201–19.

    CAS  PubMed  Google Scholar 

  100. Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34:111.

    PubMed  PubMed Central  Google Scholar 

  101. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70:1469–80.

    CAS  PubMed  Google Scholar 

  102. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, et al. Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle. 2011;10:2504–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cotán D, Paz MV, Alcocer-Gómez E, Garrido-Maraver J, Oropesa-Ávila M, de la Mata M, et al. AMPK as a target in rare diseases. Curr Drug Targets. 2016. (in press)

  104. Zadra G, Batista JL, Loda M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res. 2015;13:1059–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division. Cell Cycle. 2014;13:859–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17:113–24.

    CAS  PubMed  Google Scholar 

  107. Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX, Ou Y, et al. Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol Cell. 2013;52:161–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chou CC, Lee KH, Lai IL, Wang D, Mo X, Kulp SK, et al. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res. 2014;74:4783–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhong D, Liu X, Khuri FR, Sun SY, Vertino PM, Zhou W. LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins. Cancer Res. 2008;68:7270–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lang F, Foller M. Regulation of ion channels and transporters by AMP-activated kinase (AMPK). Channels (Austin). 2014;8:20–8.

    CAS  Google Scholar 

  112. Fraser SA, Davies M, Katerelos M, Gleich K, Choy SW, Steel R, et al. Activation of AMPK reduces the co-transporter activity of NKCC1. Mol Membr Biol. 2014;31:95–102.

    CAS  PubMed  Google Scholar 

  113. Yoshida GJ, Saya H. EpCAM expression in the prostate cancer makes the difference in the response to growth factors. Biochem Biophys Res Commun. 2014;443:239–45.

    CAS  PubMed  Google Scholar 

  114. Laderoute KR, Calaoagan JM, Chao WR, Dinh D, Denko N, Duellman S, et al. 52032-AMP-activated protein kinase (AMPK) supports the growth of aggressive experimental human breast cancer tumors. J Biol Chem. 2014;289:22850–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 2011;10:1772–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi H, Jiang H, Wang L, Cao Y, Liu P, Xu X, et al. Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device. Cell Cycle. 2015;14:3058–65.

    PubMed  PubMed Central  Google Scholar 

  117. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

    PubMed  PubMed Central  Google Scholar 

  118. Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 2013;1:8.

    PubMed  PubMed Central  Google Scholar 

  119. Hu JW, Sun P, Zhang DX, Xiong WJ, Mi J. Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts. Cell Signal. 2014;26:2210–6.

    CAS  PubMed  Google Scholar 

  120. Courteau L, Crasto J, Hassanzadeh G, Baird SD, Hodgins J, Liwak-Muir U, et al. Hexokinase 2 controls cellular stress response through localization of an RNA-binding protein. Cell Death Dis. 2015;6:e1837.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou Y, Lu N, Qiao C, Ni T, Li Z, Yu B, et al. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells. Mol Carcinog. 2015. doi:10.1002/mc.22374

  122. Henry E, Fung N, Liu J, Drakakaki G, Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLoS Genet. 2015;11:e1005199.

    PubMed  PubMed Central  Google Scholar 

  123. Suarez S, McCollum GW, Jayagopal A, Penn JS. High glucose-induced retinal pericyte apoptosis depends on association of GAPDH and Siah1. J Biol Chem. 2015;290:28311–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses. Mol Immunol. 2015;68:513–9.

    CAS  PubMed  Google Scholar 

  125. Volkenhoff A, Weiler A, Letzel M, Stehling M, Klambt C, Schirmeier S. Glial glycolysis is essential for neuronal survival in Drosophila. Cell Metab. 2015;22:437–47.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by research grant from the Department of Science and Technology, Govt. of India (Ref. SB/YS/LS-248/2013) and Department of Biotechnology, Govt. of India (Ref. 6242-P5/RGCB/PMD/DBT/SMNB/2015) to SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Roy.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Bera, S. CAF cellular glycolysis: linking cancer cells with the microenvironment. Tumor Biol. 37, 8503–8514 (2016). https://doi.org/10.1007/s13277-016-5049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5049-3

Keywords

Navigation