Skip to main content
Log in

Tubb3 regulation by the Erk and Akt signaling pathways: a mechanism involved in the effect of arginine ADP-ribosyltransferase 1 (Art1) on apoptosis of colon carcinoma CT26 cells

  • Original Article
  • Published:
Tumor Biology

Abstract

The influence of the most important classical mono-ADP-ribosyltransferase, arginine ADP-ribosyltransferase 1 (Art1), on survival and apoptosis of colon carcinoma cells and the potential mechanisms have been partly discussed in our previous study but still need to be further studied. In this present study, Art1 of colon carcinoma CT26 cells was silenced with lentiviral vector-mediated short hairpin RNA (shRNA) or overexpressed with lentiviral vector-mediated complementary DNA (cDNA) and allograft transplant tumors are established in Balb/c mice. We verified Art1 knockdown increases apoptosis of CT26 cells transplant tumor; Art1 overexpression acts oppositely. Accordingly, growth of transplant tumors is inhibited in Art1 knockdown transplant tumors and increases in Art1 overexpression transplant tumors. Furthermore, activity of Akt and Erk cell signal pathways and expression of an apoptosis biomarker, βIII-tubulin (Tubb3), decrease when Art1 was silenced and increase when Art1 was overexpressed. Inhibiting Akt pathway or Erk pathway both downregulates expression of Tubb3 on protein and messenger RNA (mRNA) level, indicating that Tubb3 could be regulated by both Akt and Erk pathways, and plays a role in the influence of Art1 on apoptosis of Balb/c mice allograft transplant tumor. We also demonstrated that Bcl-2 family is not the responsible downstream factor of the Erk pathway in colon carcinoma cells which is undergoing apoptosis. These findings enrich the molecular mechanism for the function of Art1 in colon carcinoma and provide a complementary support for Art1 to be a potential therapeutic target of the treatment of this kind of malignant tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Braren R, Glowacki G, Nissen M, Haag F, Koch-Nolte F. Molecular characterization and expression of the gene for mouse NAD+:arginine ecto-mono(ADP-ribosyl)transferase, Art1. Biochem J. 1998;336:561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Seman M, Adriouch S, Haag F, Koch-Nolte F. Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem. 2004;11(7):857–72.

    Article  CAS  PubMed  Google Scholar 

  3. Balducci E, Micossi LG, Soldaini E, Rappuoli R. Expression and selective up-regulation of toxin-related mono ADP-ribosyltransferases by pathogen-associated molecular patterns in alveolar epithelial cells. FEBS Lett. 2007;581(22):4199–204.

    Article  CAS  PubMed  Google Scholar 

  4. Del Vecchio M, Balducci E. Mono ADP-ribosylation inhibitors prevent inflammatory cytokine release in alveolar epithelial cells. Mol Cell Biochem. 2008;310(1-2):77–83.

    Article  CAS  PubMed  Google Scholar 

  5. Yang L, Wang YL, Sheng YT, Xiong W, Xu JX, Tang Y, et al. The correlation of ART1 expression with angiogenesis in colorectal carcinoma and it relationship with VEGF and integrin αVβ3 expressions. Basic Clin Med. 2012;32:1064–9.

    Google Scholar 

  6. Xu JX, Wang YL, Tang Y, Xiong W. Effect of ART1 gene silencing by RNA interference on the proliferation of mouse colon carcinoma cells and its possible mechanism. Tumor. 2012;32(12):949–54.

    CAS  Google Scholar 

  7. Tang Y, Li M, Wang YL, Threadgill MD, Xiao M, Mou CF, et al. ART1 promotes starvation-induced autophagy: a possible protective role in the development of colon carcinoma. Am J Cancer Res. 2015;5(2):498–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang Y, Wang YL, Yang L, Xu JX, Xiong W, Xiao M, et al. Inhibition of arginine ADP-ribosyltransferase 1 reduces the expression of poly (ADP-ribose) polymerase-1 in colon carcinoma. Int J Mol Med. 2013;32(1):130.

    CAS  PubMed  Google Scholar 

  9. Xiao M, Tang Y, Wang YL, Yang L, Li X, Kuang J, et al. ART1 silencing enhances apoptosis of mouse CT26 cells via the PI3K/Akt/NF-κB pathway. Cell Physiol Biochem. 2013;32(6):1587–99.

    Article  CAS  PubMed  Google Scholar 

  10. Zolkiewska A, Moss J. Integrin alpha 7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem. 1993;268(34):25273–6.

    CAS  PubMed  Google Scholar 

  11. Gilcrease MZ. Integrin signaling in epithelial cells. Cancer Lett. 2007;247(1):1–25.

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Burkin DJ, Kaufman SJ. Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. Am J Physiol Cell Physiol. 2008;294(2):C627–40.

    Article  CAS  PubMed  Google Scholar 

  13. Levallet G, Bergot E, Antoine M, Creveuil C, Santos AO, Beau-Faller M, et al. High TUBB3 expression, an independent prognostic marker in patients with early non-small cell lung cancer treated by preoperative chemotherapy, is regulated by K-Ras signaling pathway. Mol Cancer Ther. 2012;11(5):1203–13.

    Article  CAS  PubMed  Google Scholar 

  14. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–98.

    Article  CAS  PubMed  Google Scholar 

  15. Gan PP, Pasquier E, Kavallaris M. Class III β-tubulin mediates sensitivity to chemotherapeutic drugs in non-small cell lung cancer. Cancer Res. 2007;67(19):9356–63.

    Article  CAS  PubMed  Google Scholar 

  16. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10(3):194–204.

    Article  CAS  PubMed  Google Scholar 

  17. Sève P, Dumontet C. Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol. 2008;9(2):168–75.

    Article  PubMed  Google Scholar 

  18. Sève P, Lai R, Ding K, Winton T, Butts C, Mackey J, et al. Class III β-tubulin expression and benefit from adjuvant cisplatin/vinorelbine chemotherapy in operable non-small cell lung cancer: analysis of NCIC JBR. 10. Clin Cancer Res. 2007;13(3):994–9.

    Article  PubMed  Google Scholar 

  19. Mariani M, Shahabi S, Sieber S, Scambia G, Ferlini C. Class III-tubulin (TUBB3): more than a biomarker in solid tumors? Curr Mol Med. 2011;11(9):726–31.

    Article  CAS  PubMed  Google Scholar 

  20. Yoon SO, Kim WY, Go H, Paik JH, Kim JE, Kim YA, et al. Class III beta-tubulin shows unique expression patterns in a variety of neoplastic and non-neoplastic lymphoproliferative disorders. Am J Surg Pathol. 2010;34(5):645–55.

    PubMed  Google Scholar 

  21. McCarroll JA, Gan PP, Erlich RB, Liu M, Dwarte T, Sagnella S, et al. TUBB3/beta III-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res. 2015;75(2):415–25.

    Article  CAS  PubMed  Google Scholar 

  22. Gan PP, McCarroll JA, Po’uha ST, Kamath K, Jordan MA, Kavallaris M. Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of βIII-tubulin. Mol Cancer Ther. 2010;9(5):1339–48.

    Article  CAS  PubMed  Google Scholar 

  23. Roque DM, Buza N, Glasgow M, Bellone S, Bortolomai I, Gasparrini S, et al. Class III beta-tubulin overexpression within the tumor microenvironment is a prognostic biomarker for poor overall survival in ovarian cancer patients treated with neoadjuvant carboplatin/paclitaxel. Clin Exp Metastasis. 2014;31(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  24. Tsourlakis MC, Weigand P, Grupp K, Kluth M, Steurer S, Schlomm T, et al. betaIII-Tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. Am J Pathol. 2014;184(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  25. Urano N, Fujiwara Y, Doki Y, Kim SJ, Miyoshi Y, Noguchi S, et al. Clinical significance of class III beta-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int J Oncol. 2006;28(2):375–81.

    CAS  PubMed  Google Scholar 

  26. Yu J, Gao J, Lu Z, Gong J, Li Y, Dong B, et al. Combination of microtubule associated protein-tau and β-tubulin III predicts chemosensitivity of paclitaxel in patients with advanced gastric cancer. Eur J Cancer. 2004;50(13):2328–35.

    Article  Google Scholar 

  27. Mariani M, Zannoni GF, Sioletic S, Sieber S, Martino C, Martinelli E, et al. Gender influences the class III and V beta-tubulin ability to predict poor outcome in colorectal cancer. Clin Cancer Res. 2012;18(10):2964–75.

    Article  CAS  PubMed  Google Scholar 

  28. Kuang J, Wang YL, Xiao M, Tang Y, Chen WW, Song GL, et al. Synergistic effect of arginine-specific ADP-ribosyltransferase 1 and poly(ADP-ribose) polymerase-1 on apoptosis induced by cisplatin in CT26 cells. Oncol Rep. 2014;31(5):2335–43.

    CAS  PubMed  Google Scholar 

  29. O’Dwyer PJ, Moyer JD, Suffness M, Harrison SD, Cysyk R, Hamilton TC, et al. Antitumor activity and biochemical effects of aphidicolin glycinate (NSC 303812) alone and in combination with cisplatin in vivo. Cancer Res. 1994;54(3):724–9.

    PubMed  Google Scholar 

  30. Lee CK, Park KK, Lim SS, Park JHY, Chung WY. Effects of the licorice extract against tumor growth and cisplatin-induced toxicity in a mouse xenograft model of colon cancer. Biol Pharm Bull. 2007;30(11):2191–5.

    Article  CAS  PubMed  Google Scholar 

  31. Carlsson G, Gullberg B, Hafström L. Estimation of liver tumor volume using different formulas—an experimental study in rats. J Cancer Res Clin Oncol. 1983;105(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  32. Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem. 1994;269(7):5241–8.

    CAS  PubMed  Google Scholar 

  33. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995;270(46):27489–94.

    Article  CAS  PubMed  Google Scholar 

  34. Soldani C, Scovassi A. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 2002;7(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  35. Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, et al. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med. 2009;47:13–26.

    Article  CAS  PubMed  Google Scholar 

  36. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2012;19:107–2.

    Article  CAS  PubMed  Google Scholar 

  37. Langelier MF, Pascal JM. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr Opin Struct Biol. 2013;23:134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig. 1997;100(5):1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seve P, Mackey J, Isaac S, Tredan O, Souquet PJ, Perol M, et al. Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther. 2005;4(12):2001–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrandina G, Zannoni GF, Martinelli E, Paglia A, Gallotta V, Mozzetti S, et al. Class III β-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006;12(9):2774–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, et al. Class III β-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res. 2005;11(1):298–305.

    CAS  PubMed  Google Scholar 

  42. Derry WB, Wilson L, Khan IA, Luduena RF, Jordan MA. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry. 1997;36(12):3554–62.

    Article  CAS  PubMed  Google Scholar 

  43. Raspaglio G, Filippetti F, Prislei S, Penci R, De Maria I, Cicchillitti L, et al. Hypoxia induces class III beta-tubulin gene expression by HIF-1α binding to its 3′ flanking region. Gene. 2008;409(1):100–8.

    Article  CAS  PubMed  Google Scholar 

  44. Powell S, Kaizer A, Koopmeiners JS, Iwamoto C, Klein M. High expression of class III β-tubulin in small cell lung carcinoma. Oncol Lett. 2014;7(2):405–10.

    PubMed  Google Scholar 

  45. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  46. Carre M, Carles G, Andre N, Douillard S, Ciccolini J, Briand C, et al. Involvement of microtubules and mitochondria in the antagonism of arsenic trioxide on paclitaxel-induced apoptosis. Biochem Pharmacol. 2002;63(10):1831–42.

    Article  CAS  PubMed  Google Scholar 

  47. Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis. 2003;8(5):413–50.

    Article  CAS  PubMed  Google Scholar 

  48. Carré M, André N, Carles G, Borghi H, Brichese L, Briand C, et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem. 2002;277(37):33664–9.

    Article  PubMed  Google Scholar 

  49. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, et al. Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A. 2008;105(48):18746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsujimoto Y. Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep. 2002;22(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  51. Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol. 2001;152(2):237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao Z, Gruszczynska-Biegala J, Zolkiewska A. ADP-ribosylation of integrin alpha7 modulates the binding of integrin alpha7beta1 to laminin. Biochem J. 2005;385(Pt 1):309–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Project Supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ110322) and the Ministry of Education Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20105503110009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Lan Wang.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Tang, Y., Chen, WW. et al. Tubb3 regulation by the Erk and Akt signaling pathways: a mechanism involved in the effect of arginine ADP-ribosyltransferase 1 (Art1) on apoptosis of colon carcinoma CT26 cells. Tumor Biol. 37, 2353–2363 (2016). https://doi.org/10.1007/s13277-015-4058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4058-y

Keywords

Navigation