Skip to main content

Advertisement

Log in

miR-15a enhances the anticancer effects of cisplatin in the resistant non-small cell lung cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Platinum-based chemotherapies have long been used as a standard treatment in non-small cell lung cancer. However, cisplatin resistance is a major problem that restricts the use of cisplatin. Deregulated cell death mechanisms including apoptosis and autophagy could be responsible for the development of cisplatin resistance and miRNAs are the key regulators of these mechanisms. We aimed to analyse the effects of selected miRNAs in the development of cisplatin resistance and found that hsa-miR-15a-3p was one of the most significantly downregulated miRNAs conferring resistance to cisplatin in Calu1 epidermoid lung carcinoma cells. Only hsa-miR-15a-3p mimic transfection did not affect cell proliferation or cell death, though decreased cell viability was found when combined with cisplatin. We found that induced expression of hsa-miR-15a-3p via mimic transfection sensitised cisplatin-resistant cells to apoptosis and autophagy. Our results demonstrated that the apoptosis- and autophagy-inducing effects of hsa-miR-15a-3p might be due to suppression of BCL2, which exhibits a major connection with cell death mechanisms. This study provides new insights into the mechanism of cisplatin resistance due to silencing of the tumour suppressor hsa-miR-15a-3p and its possible contribution to apoptosis, autophagy and cisplatin resistance, which are the devil’s triangle in determining cancer cell fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. doi:10.1016/j.ejphar.2014.07.025.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Fu LL, Wen X, Liu B, Huang J, Wang JH, et al. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis. 2014;19(8):1177–89. doi:10.1007/s10495-014-0999-7.

    Article  CAS  PubMed  Google Scholar 

  3. Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. Int J Biochem Cell Biol. 2012;44(5):733–6. doi:10.1016/j.biocel.2012.02.004.

    Article  CAS  PubMed  Google Scholar 

  4. Cecconi F. Autophagy regulation by miRNAs: when cleaning goes out of service. EMBO J. 2011;30(22):4517–9. doi:10.1038/emboj.2011.387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joshi P, Middleton J, Jeon YJ, Garofalo M. MicroRNAs in lung cancer. World J Methodol. 2014;4(2):59–72. doi:10.5662/wjm.v4.i2.59.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9. doi:10.1073/pnas.242606799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin K, Farahani M, Yang Y, Johnson GG, Oates M, Atherton M, et al. Loss of MIR15A and MIR16-1 at 13q14 is associated with increased TP53 mRNA, de-repression of BCL2 and adverse outcome in chronic lymphocytic leukaemia. Br J Haematol. 2014;167(3):346–55. doi:10.1111/bjh.13043.

    Article  CAS  PubMed  Google Scholar 

  8. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9. doi:10.1073/pnas.0506654102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22. doi:10.1038/ncb0910-814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4(2):151–75.

    Article  CAS  PubMed  Google Scholar 

  11. Apel A, Zentgraf H, Buchler MW, Herr I. Autophagy—a double-edged sword in oncology. Int J Cancer. 2009;125(5):991–5. doi:10.1002/ijc.24500.

    Article  CAS  PubMed  Google Scholar 

  12. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005;26(5):1401–10.

    CAS  PubMed  Google Scholar 

  13. Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J, et al. The anticancer drug imatinib induces cellular autophagy. Leukemia. 2007;21(5):936–42. doi:10.1038/sj.leu.2404606.

    CAS  PubMed  Google Scholar 

  14. Chen N, Debnath J. Autophagy and tumorigenesis. FEBS Lett. 2010;584(7):1427–35. doi:10.1016/j.febslet.2009.12.034.

    Article  CAS  PubMed  Google Scholar 

  15. Solly K, Wang X, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol. 2004;2(4):363–72. doi:10.1089/1540658041850544.

    Article  CAS  PubMed  Google Scholar 

  16. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8. doi:10.1093/emboj/19.21.5720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He H, Dang Y, Dai F, Guo Z, Wu J, She X, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem. 2003;278(31):29278–87. doi:10.1074/jbc.M303800200.

    Article  CAS  PubMed  Google Scholar 

  18. MacDonagh L, Gray SG, Finn SP, Cuffe S, O’Byrne KJ, Barr MP. The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev. 2015;41(2):160–9. doi:10.1016/j.ctrv.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  19. Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci. 2000;113(Pt 7):1189–98.

    CAS  PubMed  Google Scholar 

  20. Kang R, Wang ZH, Wang BQ, Zhang CM, Gao W, Feng Y, et al. Inhibition of autophagy-potentiated chemosensitivity to cisplatin in laryngeal cancer Hep-2 cells. Am J Otolaryngol. 2012;33(6):678–84. doi:10.1016/j.amjoto.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Wu GS. Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem. 2014;289(24):17163–73. doi:10.1074/jbc.M114.558288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu L, Gu C, Zhong D, Shi L, Kong Y, Zhou Z, et al. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett. 2014;355(1):34–45. doi:10.1016/j.canlet.2014.09.020.

    Article  CAS  PubMed  Google Scholar 

  23. Bao L, Jaramillo MC, Zhang Z, Zheng Y, Yao M, Zhang DD, et al. Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol Med Rep. 2015;11(1):91–8. doi:10.3892/mmr.2014.2671.

    CAS  PubMed  Google Scholar 

  24. Sirichanchuen B, Pengsuparp T, Chanvorachote P. Long-term cisplatin exposure impairs autophagy and causes cisplatin resistance in human lung cancer cells. Mol Cell Biochem. 2012;364(1–2):11–8. doi:10.1007/s11010-011-1199-1.

    Article  CAS  PubMed  Google Scholar 

  25. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17(2):215–20. doi:10.1038/cdd.2009.69.

    Article  CAS  PubMed  Google Scholar 

  26. Druz A, Chen YC, Guha R, Betenbaugh M, Martin SE, Shiloach J. Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines. RNA Biol. 2013;10(2):287–300. doi:10.4161/rna.23339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen F, Hou SK, Fan HJ, Liu YF. MiR-15a-16 represses Cripto and inhibits NSCLC cell progression. Mol Cell Biochem. 2014;391(1-2):11–9. doi:10.1007/s11010-014-1981-y.

    Article  CAS  PubMed  Google Scholar 

  28. Tafsiri E, Darbouy M, Shadmehr MB, Zagryazhskaya A, Alizadeh J, Karimipoor M. Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features. Tumour Biol. 2014. doi:10.1007/s13277-014-2755-6.

    PubMed  Google Scholar 

  29. Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. iR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol Biol Phys. 2014. doi:10.1016/j.ijrobp.2014.09.021.

    PubMed  Google Scholar 

  30. Zhang C, Fang X, Li W, Shi Q, Wu L, Chen X, et al. Influence of recombinant lentiviral vector encoding miR-15a/16-1 in biological features of human nasopharyngeal carcinoma CNE-2Z cells. Cancer Biother Radiopharm. 2014;29(10):422–7. doi:10.1089/cbr.2013.1596.

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Beato M, Sanchez-Aguilera A, Piris MA. Cell cycle deregulation in B-cell lymphomas. Blood. 2003;101(4):1220–35. doi:10.1182/blood-2002-07-2009.

    Article  CAS  PubMed  Google Scholar 

  32. Lindqvist LM, Vaux DL. BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy. Autophagy. 2014;10(8):1474–5. doi:10.4161/auto.29639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66(6):2885–8. doi:10.1158/0008-5472.CAN-05-4412.

    Article  CAS  PubMed  Google Scholar 

  34. Coker-Gurkan A, Arisan ED, Obakan P, Ozfiliz P, Kose B, Bickici G, et al. Roscovitine-treated HeLa cells finalize autophagy later than apoptosis by downregulating Bcl2. Mol Med Rep. 2015;11(3):1968–74. doi:10.3892/mmr.2014.2902.

    CAS  PubMed  Google Scholar 

  35. Akar U, Chaves-Reyez A, Barria M, Tari A, Sanguino A, Kondo Y, et al. Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy. 2008;4(5):669–79.

    Article  CAS  PubMed  Google Scholar 

  36. Kapuy O, Vinod PK, Mandl J, Banhegyi G. A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis. Mol BioSyst. 2013;9(2):296–306. doi:10.1039/c2mb25261a.

    Article  CAS  PubMed  Google Scholar 

  37. Cetintas VB, Kucukaslan AS, Kosova B, Tetik A, Selvi N, Cok G, et al. Cisplatin resistance induced by decreased apoptotic activity in non-small-cell lung cancer cell lines. Cell Biol Int. 2012;36(3):261–5. doi:10.1042/CBI20110329.

    Article  CAS  PubMed  Google Scholar 

  38. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15(4):1126–32. doi:10.1158/1078-0432.CCR-08-0144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen CQ, Chen CS, Chen JJ, Zhou LP, Xu HL, Jin WW, et al. Histone deacetylases inhibitor trichostatin A increases the expression of Dleu2/miR-15a/16-1 via HDAC3 in non-small cell lung cancer. Mol Cell Biochem. 2013;383(1-2):137–48. doi:10.1007/s11010-013-1762-z.

    Article  CAS  PubMed  Google Scholar 

  40. Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009;69(13):5553–9. doi:10.1158/0008-5472.CAN-08-4277.

    Article  CAS  PubMed  Google Scholar 

  41. Gao SM, Yang J, Chen C, Zhang S, Xing CY, Li H, et al. miR-15a/16-1 enhances retinoic acid-mediated differentiation of leukemic cells and is up-regulated by retinoic acid. Leuk Lymphoma. 2011;52(12):2365–71. doi:10.3109/10428194.2011.601476.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ege University Research Fund [grant number BAP-2013-TIP-049 (to V.B.Ç.)]. The authors wish to thank Oguz Gözen (Department of Physiology, Ege University Medical Faculty) for proofreading and major contributions to the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vildan Bozok Çetintaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozok Çetintaş, V., Tetik Vardarlı, A., Düzgün, Z. et al. miR-15a enhances the anticancer effects of cisplatin in the resistant non-small cell lung cancer cells. Tumor Biol. 37, 1739–1751 (2016). https://doi.org/10.1007/s13277-015-3950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3950-9

Keywords

Navigation