Skip to main content
Log in

Decreased expression of EFS is correlated with the advanced prostate cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Prostate cancer is the most frequently diagnosed malignant neoplasm in men in the developed countries. Although the progression of prostate cancer and the processes of invasion and metastasis by tumor cells are comparatively well understood, the genes involved in these processes are not fully determined. Therefore, a common area of research interest is the identification of novel molecules that are involved in these processes. In the present study, we have used in silico and experimental approaches to compare the expression of embryonal Fyn-associated substrate (EFS) between normal prostate and prostate cancer. We showed that EFS expression is remarkably downregulated in prostate cancer cells, compared to normal prostate cells. We also found that decreased expression of EFS in prostate cancer cells is due to DNA methylation. In addition, we showed that high EFS expression is important to suppress a malignant behavior of prostate cancer cells. Therefore, we suggest that EFS should be considered as a novel tumor suppressor gene in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCa:

Prostate cancer

EFS:

Embryonal Fyn-associated substrate

CAS:

Crk-associated substrate

BCAR1:

Breast cancer resistance 1

NEDD9:

Neural precursor cell expressed, developmentally downregulated 9

HEPL:

HEF1-EFS-P130 Cas-like

FBS:

Fetal bovine serum

5-Aza:

5′-Aza-2′-deoxycytidine

TSA:

Trichostatin A

TBS-T:

Tris-buffered saline containing 0.1 % Tween 20

PVDF:

Polyvinyledine fluoride

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001;61:5974–8.

    CAS  PubMed  Google Scholar 

  3. Chen AH, Tsau YW, Lin CH. Novel methods to identify biologically relevant genes for leukemia and prostate cancer from gene expression profiles. BMC Genomics. 2010;11:274.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002;1:203–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790–9.

    Article  CAS  PubMed  Google Scholar 

  6. Stuart RO, Wachsman W, Berry CC, Wang-Rodriguez J, Wasserman L, Klacansky I, et al. In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc Natl Acad Sci U S A. 2004;101:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Varisli L. Identification of new genes downregulated in prostate cancer and investigation of their effects on prognosis. Genet Test Mol Biomark. 2013;17:562–6.

    Article  CAS  Google Scholar 

  9. Brinkman A, van der Flier S, Kok EM, Dorssers LC. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst. 2000;92:112–20.

    Article  CAS  PubMed  Google Scholar 

  10. Law SF, Estojak J, Wang B, Mysliwiec T, Kruh G, Golemis EA. Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in saccharomyces cerevisiae. Mol Cell Biol. 1996;16:3327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A, et al. A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell. 2008;19:1627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishino M, Ohba T, Sasaki H, Sasaki T. Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which contains a Src homology 3 domain and associates with Fyn. Oncogene. 1995;11:2331–8.

    CAS  PubMed  Google Scholar 

  13. Cabodi S, del Pilar C-LM, Di Stefano P, Defilippi P. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer. 2010;10:858–70.

    Article  CAS  PubMed  Google Scholar 

  14. Alexandropoulos K, Baltimore D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 1996;10:1341–55.

    Article  CAS  PubMed  Google Scholar 

  15. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci. 2010;67:1025–48.

    Article  CAS  PubMed  Google Scholar 

  16. Neumann LC, Weinhausel A, Thomas S, Horsthemke B, Lohmann DR, Zeschnigk M. EFS shows biallelic methylation in uveal melanoma with poor prognosis as well as tissue-specific methylation. BMC Cancer. 2011;11:380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Oncomine: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varisli L. Meta-analysis of the cell cycle related C12orf48. Biocell. 2013;37:11–6.

    CAS  PubMed  Google Scholar 

  19. Varisli L. Meta-analysis of the expression of the mitosis-related gene Fam83D. Oncol Lett. 2012;4:1335–40.

    PubMed  PubMed Central  Google Scholar 

  20. Varisli L, Gonen-Korkmaz C, Syed HM, Bogurcu N, Debelec-Butuner B, Erbaykent-Tepedelen B, et al. Androgen regulated HN1 leads proteosomal degradation of androgen receptor (AR) and negatively influences ar mediated transactivation in prostate cells. Mol Cell Endocrinol. 2012;350:107–17.

    Article  CAS  PubMed  Google Scholar 

  21. Wouters A, Pauwels B, Lambrechts HA, Pattyn GG, Ides J, Baay M, et al. Counting clonogenic assays from normoxic and anoxic irradiation experiments manually or by using densitometric software. Phys Med Biol. 2010;55:N167–78.

    Article  PubMed  Google Scholar 

  22. Pulukuri SM, Rao JS. CpG island promoter methylation and silencing of 14-3-3sigma gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2. Oncogene. 2006;25:4559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 2002;62:4499–506.

    CAS  PubMed  Google Scholar 

  24. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2007;39:41–51.

    Article  CAS  PubMed  Google Scholar 

  25. Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM, et al. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res. 2009;15:5794–802.

    Article  CAS  PubMed  Google Scholar 

  26. Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, et al. Gene expression analysis of prostate cancers. Mol Carcinog. 2002;33:25–35.

    Article  CAS  PubMed  Google Scholar 

  27. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakagawa T, Kollmeyer TM, Morlan BW, Anderson SK, Bergstralh EJ, Davis BJ, et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS One. 2008;3:e2318.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karayi MK, Markham AF. Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis. 2004;7:6–20.

    Article  CAS  PubMed  Google Scholar 

  31. Donlin LT, Danzl NM, Wanjalla C, Alexandropoulos K. Deficiency in expression of the signaling protein Sin/Efs leads to T-lymphocyte activation and mucosal inflammation. Mol Cell Biol. 2005;25:11035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alexandropoulos K, Donlin LT, Xing L, Regelmann AG. Sin: good or bad? A T lymphocyte perspective. Immunol Rev. 2003;192:181–95.

    Article  CAS  PubMed  Google Scholar 

  33. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer J Int du Cancer. 2007;121:2373–80.

    Article  CAS  Google Scholar 

  34. Tikhmyanova N, Golemis EA. NEDD9 and BCAR1 negatively regulate E-cadherin membrane localization, and promote E-cadherin degradation. PLoS One. 2011;6:e22102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of Harran University Central Laboratory (HUMEL) for their help and assistance. We would also like to thank Prof. Dr. Kemal S. Korkmaz from Ege University, Department of Bioengineering, İzmir, Turkey, for providing PC-3, DU145, and LNCaP cell lines and Assoc. Prof. Dr. Omer Faruk Bayraktar from Yeditepe University, Medical Faculty, Department of Medical Biology, Istanbul, Turkey, for providing PNT1a cell line. This study was supported by grants 113S433 and 113S290 from the Scientific and Technological Research Council of Turkey (TUBITAK) and 13044 from Harran University Scientific Research Project Unit (HUBAK) to L.V.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokman Varisli.

Additional information

Selda Sertkaya and Syed Muhammad Hamid contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sertkaya, S., Hamid, S.M., Dilsiz, N. et al. Decreased expression of EFS is correlated with the advanced prostate cancer. Tumor Biol. 36, 799–805 (2015). https://doi.org/10.1007/s13277-014-2703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2703-5

Keywords

Navigation