Skip to main content
Log in

Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo

  • Research Article
  • Published:
Tumor Biology

Abstract

Nephrotoxicity, hepatotoxicity, myelosuppression, and genotoxicity are the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Hyperthermia enhances the clastogenicity of cisplatin. In addition, hyperthermia is a promising approach for cancer therapy because it not only kills cancer cells directly, but also activates anti-cancer immunity as an indirect effect. The aim of this study was to determine whether preventive treatment with quercetin (QU) can reduce cisplatin-induced DNA damage in liver, kidney and blood cells and whether QU has the potential to serve as a beneficial supplement before cisplatin hyperthermal intraperitoneal chemotherapy (HIPEC) in order to gain immunomodulatory responses of mice to the tumor. Preventive treatment of mice with QU (50 mg kg−1) had a protective effect on cisplatin-induced DNA damage in normal cells, except kidney cells, in both normothermic and hyperthermic conditions without interfering with the antitumor efficacy of the combined regimen. Immunostimulation by QU is stressed as an important factor in the tumor-inhibiting effect of hyperthermia in addition to the well known selective heat killing of neoplastic cells. In conclusion, these results suggested that preventive treatment with QU could protect the blood, liver and kidney cells of mice against HIPEC-induced injury and increase survival of mice by improving the antitumor adaptive immunity with hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muthana M, Multhoff G, Pockley AG. Tumour infiltrating host cells and their significance for hyperthermia. Int J Hyperth. 2010;26(3):247–55.

    Article  Google Scholar 

  2. Orsolić N, Bevanda M, Kujundzić N, Plazonic A, Stajcar D, Kujundzić M. Prevention of peritoneal carcinomatosis in mice by combining hyperthermal intraperitoneal chemotherapy with the water extract from Burr parsley (Caucalis platycarpos L.). Planta Med. 2010;76(8):773–9.

    Article  PubMed  Google Scholar 

  3. Bevanda M, Orsolic N, Basic I, Vukojevic K, Benkovic V, Horvat Knezevic A, et al. Prevention of peritoneal carcinomatosis in mice with combination hyperthermal intraperitoneal chemotherapy and IL-2. Int J Hyperth. 2009;2:132–40.

    Article  Google Scholar 

  4. He B, Wang X, Shi HS, Xiao WJ, Zhang J, Mu B, et al. Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models. Integr Cancer Ther. 2012;12(3):264–70.

    Article  PubMed  Google Scholar 

  5. Komarova LN, Petin VG, Saenko AS. The recovery parameters of DNA strand breaks of Ehrlich ascites cells after the combined action of ionizing radiation and hyperthermia. Radiats Biol Radioecol. 2007;47:584–90.

    CAS  PubMed  Google Scholar 

  6. Gross C, Hansch D, Gatspar R, Multhoff G. Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem. 2003;384:267–79.

    Article  CAS  PubMed  Google Scholar 

  7. Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. 2003;94:308–13.

    Article  CAS  PubMed  Google Scholar 

  8. Ivarsson K, Myllymaki L, Jansner K, Stenram U, Tranberg KG. Resistance to tumor challenge after tumor laser thermotherapy is associated with a cellular immune response. Br J Cancer. 2005;93:435–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Glockzin G, Schlitt HJ, Piso P. Peritoneal carcinomatosis: patients selection, perioperative complications and quality of life related to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2009;7:5.

    Article  PubMed Central  PubMed  Google Scholar 

  10. de Bree E, Rosing H, Michalakis J, Romanos J, Relakis K, Theodoropoulos PA, et al. Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol. 2006;32:666–70.

    Article  PubMed  Google Scholar 

  11. Kartalou M, Essigmann JM. Recognition of cisplatin adducts by cellular proteins. Mutat Res. 2001;478:1–21.

    Article  CAS  PubMed  Google Scholar 

  12. Brozovic G, Orsolic N, Knezevic F, Horvat Knezevic A, Benkovic V, Sakic K, et al. Genotoxicity and cytotoxicity of cisplatin treatment combined with anaesthetics on EAT cells in vivo. Onkologie. 2009;6:337–43.

    Article  Google Scholar 

  13. Oršolić N, Bevanda M, Bendelja K, Horvat-Knežević A, Benković V, Bašić I. Propolis and related polyphenolic compounds; their relevance on host resistance and interaction with chemotherapy. Scientific evidence of the use of propolis in ehtnomedicine. In: Oršolić N, Bašić I, editors. Ethnopharmacology — review book. Kerala: Transworld Research Network; 2008. p. 223–50.

    Google Scholar 

  14. Naziroglu M, Karaoğlu A, Aksoy AO. Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology. 2004;195:221–30.

    Article  CAS  PubMed  Google Scholar 

  15. Oršolić N, Horvat-Knežević A, Benković V, Bašić I. Benefits of use of propolis and related flavonoids against the toxicity of chemotherapeutic agents. Scientific evidence of the use of propolis in ehtnomedicine. In: Oršolić N, Bašić I, editors. Ethnopharmacology — review book. Kerala: Transworld Research Network; 2008. p. 195–22.

    Google Scholar 

  16. Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology. 2005;212:116–23.

    Article  CAS  PubMed  Google Scholar 

  17. Yousef MI, Saad AA, El-Shennawy LK. Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem Toxicol. 2009;47:1176–83.

    Article  CAS  PubMed  Google Scholar 

  18. Yapar K, Çavuşoğlu K, Oruç E, Yalçin E. Protective effect of royal jelly and green tea extracts effect against cisplatin-induced nephrotoxicity in mice: a comparative study. J Med Food. 2009;12:1136–42.

    Article  CAS  PubMed  Google Scholar 

  19. Iraz M, Ozerol E, Gulec M, Tasdemir S, Idiz N, Fadillioglu E, et al. Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell Biochem Funct. 2006;24:357–61.

    Article  CAS  PubMed  Google Scholar 

  20. Benkovic V, Horvat Knezevic A, Dikic D, Lisicic D, Orsolic N, Basic I, et al. Radioprotective effects of propolis and quercetin gamma-irradiated mice evaluated by the alkaline comet assay. Phytomedicine. 2008;15:851–8.

    Article  CAS  PubMed  Google Scholar 

  21. Oršolić N, Benković V, Horvat-Knežević A, Kopjar N, Kosalec I, Bakmaz M, et al. Assessment by survival analysis of the radioprotective properties of propolis and its polyphenolic compounds. Biol Pharm Bull. 2007;30:946–51.

    Article  PubMed  Google Scholar 

  22. Moskaug JØ, Carlsen H, Myhrstad M, Blomhoff R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mech Ageing Dev. 2004;125:315–24.

    Article  CAS  PubMed  Google Scholar 

  23. Myhrstad MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ. Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med. 2002;32:386–93.

    Article  CAS  PubMed  Google Scholar 

  24. Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol. 2007;47:253–61.

    Article  CAS  PubMed  Google Scholar 

  25. Morales AI, Vicente-Sánchez C, Jerkic M, Santiago JM, Sánchez-González PD, Pérez-Barriocanal F, et al. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol. 2006;210:128–35.

    Article  CAS  PubMed  Google Scholar 

  26. Oršolić N, Bašić I. Cancer chemoprevention by propolis and its polyphenolic compounds in experimental animals. In: Govil JN, Singh VK, Bhardwaj R, editors. Recent progress in medicinal plants, Volume 17: Phytochemistry and pharmacology III. Houston: Studium Press; 2007. p. 55–113.

    Google Scholar 

  27. Oršolić N, Benković V, Lisičić D, Erhard J, Horvat-Knežević A. Protective effects of propolis and related polyphenolic/flavonoid compounds against toxicity induced by irinotecan. Med Oncol. 2010;27:1346–58.

    Article  PubMed  Google Scholar 

  28. Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Perez-Barriocanal F, Morales AI, Lopez-Novoa JM. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumor activity. Nephrol Dial Transplant. 2011;26:3484–95.

    Article  CAS  PubMed  Google Scholar 

  29. Orsolic N, Sirovina D, Krbavcic M, Car N. Effect of flavonoids and hyperthermal intraperitoneal chemotherapy on tumour growth and micronucleus induction in mouse tumour model. Hum Exp Toxicol. 2013 Aug 7.

  30. Singh NP, McCoy MT, Tice RR, Schneider LL. A simple technique for quantitation of low levels od DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  31. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–65.

    Article  Google Scholar 

  32. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    CAS  PubMed  Google Scholar 

  33. Asanami S, Shimono K. The effect of hyperthermia on micronucleus induction by mutagens in mice. Mutat Res. 1999;446:149–54.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JH, Kim SH, Alfieri AA, Young CW. Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res. 1984;44:102–6.

    CAS  PubMed  Google Scholar 

  35. Sharma H, Sen S, Singh N. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther. 2005;4:949–55.

    Article  CAS  PubMed  Google Scholar 

  36. Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G, et al. T-cell activation under hypoxic conditions enhances IFN-gamma secretion. Am J Respir Cell Mol Biol. 2010;42:123–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schilling D, Gehrmann M, Steinem C, de Maio A, Pockley AG, Abend M, et al. Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J. 2009;23:2467–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang SY, Duan KM, Li Y, Mei Y, Sheng H, Liu H, et al. Effect of quercetin on P-glycoprotein transport ability in Chinese healthy subjects. Eur J Clin Nutr. 2013;67:390–4.

    Article  CAS  PubMed  Google Scholar 

  39. Gibalová L, Sereš M, Rusnák A, Ditte P, Labudová M, Uhrík B, et al. P-glycoprotein depresses cisplatin sensitivity in L1210 cells by inhibiting cisplatin-induced caspase-3 activation. Gen Physiol Biophys. 2009;28:391–403.

    Article  PubMed  Google Scholar 

  40. Yang L, Li N, Wang H, Jia X, Wang X, Luo J. Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep. 2012;28:592–600.

    CAS  PubMed  Google Scholar 

  41. Ferry DR, Smith A, Malkhandi J, Fyfe DW, de Takats PG, Anderson D, et al. Phase I clinical trial of the avonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res. 1996;2:659–68.

    CAS  PubMed  Google Scholar 

  42. Hofmann J, Fiebig HH, Winterhalter BR, Berger DP, Grunicke H. Enhancement of the antiproliferative activity of cis-diamminedichloroplatinum(II) by quercetin. Int J Cancer. 1990;45:536–9.

    Article  CAS  PubMed  Google Scholar 

  43. Pabla N, Dong Z. Curtailing side effects in chemotherapy: a tale of PKCδ in cisplatin treatment. Oncotarget. 2012;3:107–11.

    PubMed Central  PubMed  Google Scholar 

  44. Grunicke H, Hofmann J, Maly K, Uberall F, Posch L, Oberhuber H, et al. The phospholipid and calcium dependent protein kinase as a target in tumor chemotherapy. Adv Enzym Regul. 1989;28:201–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Sciences, Education and Sports of the Republic of Croatia project No. 119-0000000-1255.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Oršolić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oršolić, N., Car, N. Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumor Biol. 35, 6445–6454 (2014). https://doi.org/10.1007/s13277-014-1843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1843-y

Keywords

Navigation