Skip to main content

Advertisement

Log in

Increase of exostosin 1 in plasma as a potential biomarker for opisthorchiasis-associated cholangiocarcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

A proteomic-based approach was used to search for potential markers in the plasma of hamsters in which cholangiocarcinoma (CCA) was induced by Opisthorchis viverrini infection and N-nitrosodimethylamine treatment. The plasma proteins of CCA-induced hamsters were resolved by 1-D PAGE, digested by trypsin, and analyzed by LC-MS/MS. From the criteria of protein ID scores >15 and an overexpression of at least three times across all time points, 37 proteins were selected. These overexpressed proteins largely consisted of signal transduction, structural, transport, and transcriptional proteins in the order. Among the most frequently upregulated proteins, exostosin 1 (EXT1) was selected for further validation. By western blot analysis, the EXT1 expression level in the plasma of hamster CCA was significantly higher than that of controls at 1 month and thereafter. Immunohistochemistry revealed that EXT1 was expressed at vascular walls and fibroblasts at 21 days (before tumor onset) and at 2 months (early CCA) posttreatment. Its expression was also observed in bile duct cancer cells during tumor progression at 6 months posttreatment. In the human CCA tissue microarray, EXT1 immunoreactivity was found not only in vascular walls and fibroblasts but also in bile duct cancer cells and was positive in 89.7 % (61/68) of the cases. By ELISA and immunoblotting, plasma EXT1 level was significantly higher in human CCA compared to healthy controls. In conclusion, these results suggest that increased expression of EXT1 level in the plasma might be involved in CCA genesis and might be a potential biomarker of CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OV:

Opisthorchis viverrini

CCA:

Cholangiocarcinoma

EXT1:

Exostosin 1

ECM:

Extracellular matrix

References

  1. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci. 2010;101:579–85.

    Article  CAS  PubMed  Google Scholar 

  2. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet. 2005;366:1303–14.

    Article  PubMed  Google Scholar 

  3. Sriamporn S, Pisani P, Pipitgool V, Suwanrungruang K, Kamsa-ard S, Parkin DM. Prevalence of Opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, northeast thailand. Trop Med Int Health. 2004;9:588–94.

    Article  CAS  PubMed  Google Scholar 

  4. Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from thailand. Curr Opin Gastroenterol. 2008;24:349–56.

    Article  PubMed  Google Scholar 

  5. Patel T. Cholangiocarcinoma—controversies and challenges. Nat Rev Gastroenterol Hepatol. 2011;8:189–200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Alvaro D. Serum and bile biomarkers for cholangiocarcinoma. Curr Opin Gastroenterol. 2009;25:279–84.

    Article  CAS  PubMed  Google Scholar 

  7. Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakorn S. Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected syrian golden hamsters. Cancer Res. 1978;38:4634–9.

    CAS  PubMed  Google Scholar 

  8. Prakobwong S, Yongvanit P, Hiraku Y, Pairojkul C, Sithithaworn P, Pinlaor P, et al. Involvement of mmp-9 in peribiliary fibrosis and cholangiocarcinogenesis via rac1-dependent DNA damage in a hamster model. Int J Cancer. 2010;127:2576–87.

    Article  CAS  PubMed  Google Scholar 

  9. Sripa B, Mairiang E, Thinkhamrop B, Laha T, Kaewkes S, Sithithaworn P, et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology. 2009;50:1273–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Juan HF, Chen JH, Hsu WT, Huang SC, Chen ST, Yi-Chung Lin J, et al. Identification of tumor-associated plasma biomarkers using proteomic techniques: from mouse to human. Proteomics. 2004;4:2766–75.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    Article  CAS  PubMed  Google Scholar 

  12. Khoontawad J, Laothong U, Roytrakul S, Pinlaor P, Mulvenna J, Wongkham C, et al. Proteomic identification of plasma protein tyrosine phosphatase alpha and fibronectin associated with liver fluke, Opisthorchis viverrini, infection. PLoS One. 2012;7:e45460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Guo J, Wang W, Liao P, Lou W, Ji Y, Zhang C, et al. Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis. Cancer Sci. 2009;100:2292–301.

    Article  CAS  PubMed  Google Scholar 

  14. Yonglitthipagon P, Pairojkul C, Chamgramol Y, Mulvenna J, Sripa B. Up-regulation of annexin a2 in cholangiocarcinoma caused by Opisthorchis viverrini and its implication as a prognostic marker. Int J Parasitol. 2010;40:1203–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lin X, Gan L, Klein WH, Wells D. Expression and functional analysis of mouse ext1, a homolog of the human multiple exostoses type 1 gene. Biochem Biophys Res Commun. 1998;248:738–43.

    Article  CAS  PubMed  Google Scholar 

  16. Lin X, Wells D. Isolation of the mouse cdna homologous to the human ext1 gene responsible for hereditary multiple exostoses. DNA Seq. 1997;7:199–202.

    CAS  PubMed  Google Scholar 

  17. de Andrea CE, Hogendoorn PC. Epiphyseal growth plate and secondary peripheral chondrosarcoma: the neighbours matter. J Pathol. 2012;226:219–28.

    Article  PubMed  Google Scholar 

  18. Cook A, Raskind W, Blanton SH, Pauli RM, Gregg RG, Francomano CA, et al. Genetic heterogeneity in families with hereditary multiple exostoses. Am J Hum Genet. 1993;53:71–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bernard MA, Hall CE, Hogue DA, Cole WG, Scott A, Snuggs MB, et al. Diminished levels of the putative tumor suppressor proteins ext1 and ext2 in exostosis chondrocytes. Cell Motil Cytoskeleton. 2001;48:149–62.

    Article  CAS  PubMed  Google Scholar 

  20. Osterholm C, Barczyk MM, Busse M, Gronning M, Reed RK, Kusche-Gullberg M. Mutation in the heparan sulfate biosynthesis enzyme ext1 influences growth factor signaling and fibroblast interactions with the extracellular matrix. J Biol Chem. 2009;284:34935–43.

    Article  PubMed  Google Scholar 

  21. Zak BM, Crawford BE, Esko JD. Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta. 2002;1573:346–55.

    Article  CAS  PubMed  Google Scholar 

  22. Hennekam RC. Hereditary multiple exostoses. J Med Genet. 1991;28:262–6.

    Article  CAS  PubMed  Google Scholar 

  23. Schmale GA, Conrad 3rd EU, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am. 1994;76:986–92.

    CAS  PubMed  Google Scholar 

  24. Jhandier MN, Kruglov EA, Lavoie EG, Sevigny J, Dranoff JA. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of ntpdase2. J Biol Chem. 2005;280:22986–92.

    Article  CAS  PubMed  Google Scholar 

  25. Juttijudata P, Chiemchaisri C, Palavatana C, Churnratanakul S. Causes of cholestasis in Thailand. A study of 276 consecutive patients. Am J Surg. 1984;147:360–6.

    Article  CAS  PubMed  Google Scholar 

  26. Farazi PA, Zeisberg M, Glickman J, Zhang Y, Kalluri R, DePinho RA. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. Cancer Res. 2006;66:6622–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ong CK, Subimerb C, Pairojkul C, Wongkham S, Cutcutache I, Yu W, et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet. 2012;44:690–3.

    Article  CAS  PubMed  Google Scholar 

  28. Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2012;9:44–54.

    Article  CAS  Google Scholar 

  29. McCormick C, Leduc Y, Martindale D, Mattison K, Esford LE, Dyer AP, et al. The putative tumour suppressor ext1 alters the expression of cell-surface heparan sulfate. Nat Genet. 1998;19:158–61.

    Article  CAS  PubMed  Google Scholar 

  30. Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K. The putative tumor suppressors ext1 and ext2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem. 1998;273:26265–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tatrai P, Egedi K, Somoracz A, van Kuppevelt TH, Ten Dam G, Lyon M, et al. Quantitative and qualitative alterations of heparan sulfate in fibrogenic liver diseases and hepatocellular cancer. J Histochem Cytochem. 2010;58:429–41.

    Article  CAS  PubMed  Google Scholar 

  32. Koo CY, Sen YP, Bay BH, Yip GW. Targeting heparan sulfate proteoglycans in breast cancer treatment. Recent Pat Anticancer Drug Discov. 2008;3:151–8.

    Article  CAS  PubMed  Google Scholar 

  33. Davies EJ, Blackhall FH, Shanks JH, David G, McGown AT, Swindell R, et al. Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10:5178–86.

    Article  CAS  Google Scholar 

  34. Korc M. Pancreatic cancer-associated stroma production. Am J Surg. 2007;194:S84–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971;27:549–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (to JK and SP), Thailand Research Fund (RMU5380016), a Research Team Strengthening Grant from BIOTEC-NSTDA, Thailand, The Invitation Research from the Faculty of Medicine, Khon Kaen University, Thailand, and The Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS), Khon Kaen University, Thailand. We thank a Research Assistant, Faculty of Medicine, Khon Kaen University, Thailand, for the technical support. We wish to acknowledge the support of the Khon Kaen University Publication Clinic, Research and Technology Transfer Affairs, Khon Kaen University, for their assistance. We also thank Prof. Yukifumi Nawa, Research Affairs, Faculty of Medicine, Khon Kaen University, Thailand, for his suggestion and critical reading of the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somchai Pinlaor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoontawad, J., Hongsrichan, N., Chamgramol, Y. et al. Increase of exostosin 1 in plasma as a potential biomarker for opisthorchiasis-associated cholangiocarcinoma. Tumor Biol. 35, 1029–1039 (2014). https://doi.org/10.1007/s13277-013-1137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1137-9

Keywords

Navigation