Skip to main content
Log in

Comparison of gene expression patterns from zebrafish embryos between pure silver nanomaterial and mixed silver nanomaterial containing cells of Hydra magnipapillata

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Silver nanomaterials have potentially toxic effects in aquatic organisms. However, lower toxicity was demonstrated in hydra exposed to high concentrations of silver nanomaterials. Moreover, aggregated nanomaterials were shown to be excreted from hydra. These excreted nanomaterials had an increased particle size and changed particle shapes compared to the native particles. In addition, the changed nanomaterials were shown to convey reduced toxicity. To investigate the effect of hydra extract on changes in nanotoxicity, we formed a mixed silver nanomaterial that included hydra cells. We investigated the nanotoxicity of this mixture on zebrafish embryogenesis, because zebrafish have very high sensitivity to environmental conditions. The survival rate of embryos in the mixed nano groups was higher than that in the pure nano groups. We also compared the gene expression patterns between pure silver nanomaterials and mixed silver nanomaterials in zebrafish embryos using microarray analysis. We identified the metabolic and cellular processes that had altered gene expression. Genes related to apoptosis were overexpressed in the pure silver nano groups, and genes involved in the immune system had lower expression compared to the mixed silver nano groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahamed, M., Alsalhi, M. S. & Siddiqui, M. K. Silver nanoparticle applications and human health. Clin Chim Acta 11:1841–1848 (2010).

    Article  Google Scholar 

  2. Ghosh, M. et al. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Hadrup, N. et al. The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 33:416–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Woodrow Wilson International Center for Scholars (WWICS). Consumer products. An inventory of nanotechnology-based consumer products currently on the market. www.nanotechproject.org/inventories/consumer (2011).

  5. Woodrow Wilson International Center for Scholars (WWICS). Silver nanotechnologies and the environment: old problems or new challenges? Washington, D.C., p 72 (2008).

  6. Yeo, M. K. & Yoon, J. W. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31 (2009).

    Google Scholar 

  7. Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S. & Lead, J. R. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517531 (2011).

    Article  Google Scholar 

  8. Lapresta-Fernández, A. & Fernández, A. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trac-Trends Anal Chem 32:4059 (2012).

    Article  Google Scholar 

  9. Blaser, S. A., Scheringer, M., Macleod, M. & Hungerbühler, K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396409 (2008).

    Article  Google Scholar 

  10. Lombi, E. et al. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, J. F., Yu, S. J., Yin, Y. G. & Chao, J. B. Methods for separation, identification, characterization and quantification of silver nanoparticles. Trac-Trends Anal Chem 33:95–106 (2012).

    Article  Google Scholar 

  12. Yeo, M. K. & Kang, M. S. The effect of nano-scale Zndoped Ti02 and pure Ti02 particles on Hydra magnipapillata. Mol Cell Toxicol 6:9–17 (2010).

    Article  CAS  Google Scholar 

  13. Quinn, B., Gagné, F. & Blaise, C. Hydra, a model system for environmental studies. Int J Dev Biol 56:613625 (2012).

    Article  Google Scholar 

  14. Marchesano, V. et al. Imaging inward and outward trafficking of gold nanoparticles in whole animals. ACS Nano 7:2431–2442 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ozbek, S. The cnidarian nematocyst: a miniature extracellular matrix within a secretory vesicle. Protoplasma 248:635–640 (2011).

    Article  PubMed  Google Scholar 

  16. Hajnóczky, G., Davies, E. & Madesh, M. Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454 (2003).

    Article  PubMed  Google Scholar 

  17. Deniaud, A. et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27:285–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Vasta, G. R., Ahmed, H., Du, S. & Henrikson, D. Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj J 21:503–521 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Mollet, L. et al. Opposing Mcl-1, the GALIG proapoptotic gene is upregulated as neutrophils die and underexpressed in Acute Myeloid Leukemia cells. Mol Immunol 56:123–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Vojtech, L. N., Scharping, N., Woodson, J. C. & Hansen, J. D. Roles of inflammatory caspases during proceßsing of zebrafish interleukin-lß in Francisella noatunensis infection. Infect Immun 80:2878–2885 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yang, X. D., Chen, L. F. Talking to histone: methylated RelA serves as a messenger. Cell Res 21:561–563 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rifas, L. & Weitzmann, N. M. A novel secreted osteoclastogenic factor of activated T cells (SOFAT) induces osteoclast formation in a RANKL-independent manner. Arthritis Rheum 60:3324–3335 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hermann, A., Donato, R., Weiger, T. M. & Chazin, W. J. S100 calcium binding proteins and ion channels. Front Pharmacol 3:1–10 (2012).

    Article  Google Scholar 

  24. Lim, D. et al. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem 31:585–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, N., Fraenkel, E., Pabo, C. O. & Pavletich, N. P Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 13:666–674 (1999).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nishioka, T. et al. FosB gene products trigger cell proliferation and morphological alteration with an increased expression of a novel processed form of galectin-1 in the rat 3Y1 embryo cell line. J Biochem 131:653661 (2002).

    Article  Google Scholar 

  27. Vasu, V. T., Cross, C. E. & Gohil, K. Nr1d1, an important circadian pathway regulatory gene, is suppressed by cigarette smoke in murine lungs. Integr Cancer Ther 8:321–328 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lerdrup, M. et al. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis. Biochim Biophys Acta 1745:29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Feuerborn, A. et al. The Forkhead factor FoxQl influences epithelial differentiation. J Cell Physiol 226:710719 (2011).

    Article  Google Scholar 

  30. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Trottier, S., Blaise, C., Kusui, T. & Johnson, E. M. Acute toxicity assessment of aqueous samples using a microplate-based Hydra attenuata assay. Environ Toxicol Water Qual 12:265–271 (1997).

    Article  CAS  Google Scholar 

  32. Yum, S. et al. Hydra, a candidate for an alternative model in environmental genomics. Mol Cell Toxicol 10:339–346 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyeong Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HG., Yeo, MK. Comparison of gene expression patterns from zebrafish embryos between pure silver nanomaterial and mixed silver nanomaterial containing cells of Hydra magnipapillata . Mol. Cell. Toxicol. 11, 307–314 (2015). https://doi.org/10.1007/s13273-015-0030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0030-6

Keywords

Navigation