Skip to main content
Log in

Application of biosensors in smart packaging

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Smart packaging is an exponentially growing field in the food industry, encompassing various fields of technology to aid in controlling the environment and detecting changes in the headspace, and tracing product history. Due to the frequent incidents of foodborne illnesses around the world, the major issues presently facing the industry involve ensuring the quality and the safety of its food products. Smart packaging, with built-in sensors and indicators, has been touted as a convenient technology to monitor freshness. In this review, we focus on current applications of sensors and/or indicators that can detect the freshness of meat products in smart packaging, since the mechanisms of spoilage are fundamentally similar in all types of meats. The prerequisites and principles of different types of currently available indicators/sensors for smart packaging are addressed, and an approach to improve the current technology is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korean Ministry of Food and Drug Safety, http://www.mfds.go.kr/index.do?mid=675&seq=26863&cmd=v (2015).

  2. National Food Safety Information Service, http://www.foodinfo.or.kr/BULLETIN_A.do?am=BOARD_LIST&boardCd=B51 (2015).

  3. Food Safety News, http://www.foodsafetynews.com/sections/foodborne-illness-outbreaks (2015).

  4. Kerry, J. & Butler, P. in Smart Packaging Technologies for Fast Moving Consumer Goods. 1st Ed (John Wiley, Chichester, West Sussex, Eng.; Hoboken, NJ, 2008).

    Book  Google Scholar 

  5. Mahalik, N. P. Processing and packaging automation systems: A review. Sens Instrum Food Qual Saf 3:12–25 (2009).

    Article  Google Scholar 

  6. Kress-Rogers, E. in Instrumentation and Sensors for the Food Industry. 1st Ed (Butterworth-Heinemann, Oxford; Boston, 1993).

    Google Scholar 

  7. Sekhon, S. et al. Stress specific Escherichia coli biosensors based on gene promoters for toxicity monitoring. Mol Cell Toxicol 10:369–377 (2014).

    Article  CAS  Google Scholar 

  8. Sekhon, S. et al. Advances in pathogen-associated molecules detection using aptamer based biosensors. Mol Cell Toxicol 9:311–317 (2013).

    Article  CAS  Google Scholar 

  9. Kang, J., Kim, S. & Kwon, Y. Antibody-based biosensors for environmental monitoring. Toxicol Environ Health Sci 1:145–150 (2009).

    Article  Google Scholar 

  10. Kuswandi, B. et al. Smart packaging: sensors for monitoring of food quality and safety. Sens Instrum Food Qual Saf 5:137–146 (2011).

    Article  Google Scholar 

  11. Fortin, C., Goodwin, H. L. & Thomsen, M. Consumer attitudes toward freshness indicators on perishable food products. J Food Distrib Res 40:1–15 (2009).

    Google Scholar 

  12. Dave, D. & Ghaly, A. E. Meat spoilage mechanisms and preservation techniques: a critical review. Am J Agric Biol Sci 6:486–510 (2011).

    Article  CAS  Google Scholar 

  13. Ercolini, D., Russo, F., Torrieri, E., Masi, P. & Villani, F. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl Environ Microbiol 72:4663–4671 (2006).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Huis in’t Veld, J. H. Microbial and biochemical spoilage of foods: An overview. Int J Food Microbiol 33:118 (1996).

    Google Scholar 

  15. Jensen, W. K., Devine, C. & Dikeman, M. in Encyclopedia of Meat Sciences. 1st Ed (Academic, Oxford, 2004).

    Google Scholar 

  16. Borch, E., Kant-Muermans, M. L. & Blixt, Y. Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33:103–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Nassos, P S., King, A. D., & Stafford, A. E. Relationship between lactic acid concentration and bacterial spoilage in ground beef. Appl Environ Microbiol 46:894–900 (1983).

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Fernández, J., Pérez-Álvarez, J. A. & Fernández-López, J. A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem 59:345–353 (1997).

    Article  Google Scholar 

  19. Hultin, M. et al. Metabolism of emulsions containing medium-and long-chain triglycerides or interesterified triglycerides. J Lipid Res 35:1850–1860 (1994).

    CAS  PubMed  Google Scholar 

  20. Halliwell, B. & Chirico, S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S-724S; discussion 724S-725S (1993).

    Google Scholar 

  21. Lund, M. N., Heinonen, M., Baron, C. P & Estevez, M. Protein oxidation in muscle foods: A review. Mol Nutr Food Res 55:83–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Kuwahara, K. & Osako, K. Effect of sodium gluconate on gel formation of Japanese common squid muscle. Nippon Suisan Gakk 69:637–642 (2003).

    Article  CAS  Google Scholar 

  23. Pavelková, A. Time temperature indicators as devices intelligent packaging. Acta Univ Agric Silvic Mendelianae Brun 61:245–251 (2013).

    Article  Google Scholar 

  24. Kim, K., Kim, E. & Lee, S. J. New enzymatic timetemperature integrator (TTI) that uses laccase. J. Food Eng 113:118–123 (2012).

    Article  CAS  Google Scholar 

  25. Kunamneni, A. et al. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochem 43:169–178 (2008).

    Article  CAS  Google Scholar 

  26. Moshtaghioun, S. M. et al. Direct spectrophotometric assay of laccase using diazo derivatives of guaiacol. Anal Chem 83:4200–4205 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Tinker, J. H., Salvin, J. W., Leason, R. J. & Empola, V. G. Evaluation of automated time-temperature monitoring system in measuring the freshness of chilled fish. Sci Tech Froid 4:286–290 (1985).

    Google Scholar 

  28. Taoukis, P. S., Koutsoumanis, K. & Nychas, G. J. Use of time temperature intergrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int J Food Microbiol 53:21–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Grisius, R., Wells, J. H., Barrett, E. L. & Singh, R. P. Correlation of time-temperature indicator response with microbial growth in pasteurized milk. J Food Process Preserv 11:309–324 (1987).

    Article  Google Scholar 

  30. Shellhammer, T. H. & Singh, R. P. Monitoring chemical and microbial changes of cottage cheese using a full-history time-temperature indicator. J Food Sci 56:402–405 (1991).

    Article  CAS  Google Scholar 

  31. Chen, H. C. & Zall, R. R. Refrigerated orange juice can be monitored for freshness using a polymer indicator label. Dairy Food Sanit 7:280–283 (1987).

    Google Scholar 

  32. Labuza, T. P. & Fu, B. I. N. Use of time/temperature integrators, predictive microbiology, and related technologies for assessing the extent and impact of temperature abuse on meat and poultry products. J Food Saf 15:201–227 (1995).

    Article  Google Scholar 

  33. Singh, R. P. & Wells, J. H. Use of time-temperature indicators to monitor quality of frozen hamburger. Food Tech 39:42–50 (1985).

    Google Scholar 

  34. Giannakourou, M. C. & Taoukis, P. S. Application of a TTI-based distribution management system for quality optimization of frozen vegetables at the consumer end. J Food Sci 68:201–209 (2003).

    Article  CAS  Google Scholar 

  35. Chen, J. H. et al. Intervention technologies for ensuring microbiological safety of meat: Current and future trends. Compr Rev Food Sci Food Saf 11:119–132 (2012).

    Article  Google Scholar 

  36. Dainty, R. H. Chemical/biochemical detection of spoilage. Int J Food Microbiol 33:19–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Jawaheer, S., White, S. F., Rughooputh, S. D. D. V. & Cullen, D. C. Development of a common biosensor format for an enzyme based biosensor array to monitor fruit quality. Biosens Bioelectron 18:1429–1437 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ge, F., Zhang, X.-E., Zhang, Z.-P. & Xiao-Mei, Z. Simultaneous determination of maltose and glucose using a screen-printed electrode system. Biosens Bioelectron 13:333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Mizutani, F., Sato, Y., Hirata, Y. & Yabuki, S. Highthroughput flow-injection analysis of glucose and glutamate in food and biological samples by using enzyme/ polyion complex-bilayer membrane-based electrodes as the detectors. Biosens Bioelectron 13:809–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, B. & Labuza, T. in Shelf-Life Testing: Procedures and Prediction Methods (eds Marilyn C. Erickson & Yen Con Hung) 377–415 (Springer US, 1997).

  41. Kim, M. J., Jung, S. W., Park, H. R. & Lee, S. J. Selection of an optimum pH-indicator for developing lactic acid bacteria-based time-temperature integrators (TTI). J Food Eng 113:471–478 (2012).

    Article  CAS  Google Scholar 

  42. Serra, B., Reviejo, A. J., Parrado, C. & Pingarron, J. M. Graphite-Teflon composite bienzyme electrodes for the determination of l-lactate: Application to food samples. Biosens Bioelectron 14:505–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Gorris, L. G. M. & Peppelenbos, H. W. Modified atmosphere and vacuum packaging to extend the shelf life of respiring food products. Hort Technol 2:303–309 (1992).

    Google Scholar 

  44. Smolander, M., Hurme, E. & Ahvenainen, R. Leak indicators for modified-atmosphere packages. Trends Food Sci Tech 8:101–106 (1997).

    Article  CAS  Google Scholar 

  45. Kawabata, Y., Kamichika, T., Imasaka, T. & Ishibashi, N. Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly (ethylene glycol) membrane. Anal Chim Acta 219:223–229 (1989).

    Article  CAS  Google Scholar 

  46. Mills, A., Chang, Q. & McMurray, N. Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal Chem 64:1383–1389 (1992).

    Article  CAS  Google Scholar 

  47. Mills, A., Lepre, A. & Wild, L. Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor. Sens Actuators B 39:419–425 (1997).

    Article  CAS  Google Scholar 

  48. Pandey, S. & Kim, K.-H. The relative performance of NDIR-based sensors in the near real-time analysis of CO2 in air. Sensors 7:1683–1696 (2007).

    Article  PubMed Central  CAS  Google Scholar 

  49. Zhou, R., Vaihinger, S., Geckeler, K. E. & Gopel, W. Reliable CO2 sensors with silicon-based polymers on quartz microbalance transducers. Sens Actuators B 19:415–420 (1994).

    Article  CAS  Google Scholar 

  50. Sashida, T., Saitou, T. & Egawa, M. Development of a carbon dioxide concentration meter using a solid electrolyte sensor. In The Society of Instrument and Control Engineers (SICE) 2002. Proceedings of the 41st SICE Annual Conference Osaka 1:590–593 (2002).

    Google Scholar 

  51. Roberts, L., Lines, R., Reddy, S. & Hay, J. Investigation of polyviologens as oxygen indicators in food packaging. Sens Actuat B 152:63–67 (2011).

    Article  CAS  Google Scholar 

  52. Suresh, S., Srivastava, V. C. & Mishra, I. M. Techniques for oxygen transfer measurement in bioreactors: A review. J Chem Technol Biotechnol 84:1091–1103 (2009).

    Article  CAS  Google Scholar 

  53. Byrne, L., Lau, K. T. & Diamond, D. Monitoring of headspace total volatile basic nitrogen from selected fish species using reflectance spectroscopic measurements of pH sensitive films. The Analyst 127:13381341 (2002).

    Article  Google Scholar 

  54. Freeman, L. R., Silverman, G. J., Angelini, P., Merritt, C., Jr. & Esselen, W. B. Volatiles produced by microorganisms isolated from refrigerated chicken at spoilage. Appl Environ Microbiol 32:222–231 (1976).

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Monique, E. Volatile amines as criteria for chemical quality assessment, http://archimer.ifremer.fr/doc/00000/6486/(Accessed on 26 May 2015).

    Google Scholar 

  56. Pacquit, A. et al. Development of a smart packaging for the monitoring of fish spoilage. Food Chem 102:466–470 (2007).

    Article  CAS  Google Scholar 

  57. Pacquit, A. et al. Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta 69:515520 (2006).

    Article  Google Scholar 

  58. Werner, T., Klimant, I. & Wolfbeis, O. S. Ammoniasensitive polymer matrix employing immobilized indicator ion pairs. The Analyst 120:1627–1631 (1995).

    Article  CAS  Google Scholar 

  59. Ladero Losada, V. M., Calles-Enríquez, M., Fernández García, M. & Álvarez González, M. Á. Toxicological Effects of Dietary Biogenic Amines. Curr Nutr Food Sci 6:145–156 (2010).

  60. Bodmer, S., Imark, C. & Kneubühl, M. Biogenic amines in foods: Histamine and food processing. Inflamm Res 48:296–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Halász, A., Baráth, Á., Simon-Sarkadi, L. & Holzapfel, W. Biogenic amines and their production by microorganisms in food. Trends Food Sci Technol 5:42–49 (1994).

    Article  Google Scholar 

  62. Maijala, R., Nurmi, E. & Fischer, A. Influence of processing temperature on the formation of biogenic amines in dry sausages. Meat Sci 39:9–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Slemr, T. Biogenic amine als potentioller chemescher qualitatsindikator fur fleish. Fleischwirtsschaft 61:921924 (1981).

    Google Scholar 

  64. Edwards, R. A., Dainty, R. H. & Hibbard, C. M. Putrescine and cadaverine formation in vacuum packed beef. J Appl Microbiol 58:13–19 (1985).

    CAS  Google Scholar 

  65. Wortberg, B. & Woller, R. Quality and freshness of meat and meat products as related to their content of biogenic amines. Fleischwirtschaft 62:1457–1463 (1982).

    CAS  Google Scholar 

  66. Okuma, H., Okazaki, W., Usami, R. & Horikoshi, K. Development of the enzyme reactor system with an amperimetric detection and application to estimation of the incipient stage of spoilage of chicken. Anal Chim Acta 411:37–43 (2000).

    Article  CAS  Google Scholar 

  67. Punakivi, K., Smolander, M., Niku-Paavola, M. L., Mattinen, J. & Buchert, J. Enzymatic determination of biogenic amines with transglutaminase. Talanta 68:1040–1045 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ronkainen, N. J., Halsall, H. B. & Heineman, W. R. Electrochemical biosensors. Chem Soc Rev 39:17471763 (2010).

    Article  Google Scholar 

  69. Sotoducho, J. & Cabaj, J. Electrochemical nanosized biosensors: Perspectives and future of biocatalysts. J Anal Bioanal Tech S7: 005, doi. 10.4172/2155-9872.S7-005 (2013).

    Google Scholar 

  70. Putzbach, W. & Ronkainen, N. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors 13:4811–4840 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Bandyopadhyaya, R., Nativ-Roth, E., Regev, O. & Yerushalmi-Rozen, R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Letters 2:25–28 (2001).

    Article  Google Scholar 

  72. Mantha, S., Pedrosa, V. A., Olsen, E. V., Davis, V. A. & Simonian, A. L. Renewable nanocomposite layerby-layer assembled catalytic interfaces for biosensing applications. Langmuir 26:19114–19119 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Zhu, H., White, I. M., Suter, J. D. & Fan, X. Phagebased label-free biomolecule detection in an opto-fluidic ring resonator. Biosens Bioelectron 24:461–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hench, L. L. & West, J. K. The sol-gel process. Chem Rev 90:33–72 (1990).

    Article  CAS  Google Scholar 

  75. Gervais, L. et al. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens Actuat B 125:615–621 (2007).

    Article  CAS  Google Scholar 

  76. Liu, Y., Matharu, Z., Howland, M., Revzin, A. & Simonian, A. Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing. Anal Bioananl Chem 404:1181–1196 (2012).

    Article  CAS  Google Scholar 

  77. Das, M., Shim, K., An, S. & Yi, D. Review on gold nanoparticles and their applications. Toxicol Environ Health Sci 3:193–205 (2011).

    Article  Google Scholar 

  78. Eom, K. H., Kim, M. C., Lee, S. J. & Lee, C. W. The vegetable freshness monitoring system using RFID with oxygen and carbon dioxide sensor. Int J Distrib Sens Netw 2012:6 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonhee Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.W., Kim, S.M., Lee, J.Y. et al. Application of biosensors in smart packaging. Mol. Cell. Toxicol. 11, 277–285 (2015). https://doi.org/10.1007/s13273-015-0027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0027-1

Keywords

Navigation