Skip to main content
Log in

Fiber-reinforced polymers with integrated shape memory alloy actuation: an innovative actuation method for aerodynamic applications

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This contribution focuses on the application potential of active fiber-reinforced polymer (FRP) structures with integrated shape memory alloy (SMA) elements for new aerodynamic functions. The advantages of hybrid SMA FRP structures are highlighted, and promising application concepts are discussed. To illustrate the applicability of the technology, the developed manufacturing, design, and control approaches are presented. Main focus is the development of a new concept for an active aerodynamic airfoil and the realization of a hardware demonstrator. Beginning with the idea of an adaptive airfoil, able to bear an application relevant down force at a relatively high deflection, the design process starts with an evaluation of different actuation concepts. An SMA-powered cantilever is a part of the profile itself. Applying the finite-element method with a suitable model for the active hybrid material, an effective selection of material and design is possible. After manufacturing and assembling of the active hybrid airfoil, a comparison of experimental results and simulation is the first proof of success. Finally, the installation of an integrated hardware setup with power source, control, and the active hybrid structure, demonstrating actuation on demand, verifies the potential and the distinct advantages of the new approach using SMA FRP structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Janocha, H.: Adaptronics and smart structures. Springer, New York (2007)

    Book  Google Scholar 

  2. Quackenbush, T.R., McKillip, R.M., Whitehouse, G.R.: Development and testing of deployable vortex generators using SMA actuation. In: Proceedings of 28th AIAA Applied Aerodynamics Conference 28 (2010)

  3. Ikeda, T., Masuda, S., Miyasaka, T., Ueda, T.: Smart vortex generator using shape memory alloy. In: Proceedings of 25th International Congress of the Aeronautical Sciences (2006)

  4. Hartl, D.J., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application. I. Thermomechanical characterization. Smart Mater. Struct. 19(1), 15020 (2010)

    Article  Google Scholar 

  5. Hartl, D.J., Mooney, J.T., Lagoudas, D.C., Calkins, F.T., Mabe, J.H.: Use of a Ni60Ti shape memory alloy for active jet engine chevron application, II. Experimentally validated numerical analysis. Smart Mater. Struct. 19(1), 15021 (2010)

    Article  Google Scholar 

  6. Pitt, D.M., Dunne, J.P., Withe, E.V.: SAMPSON smart inlet SMA powered adaptive lip design and static test. In: Proceedings of 42th Structures, Structural Dynamics and Materials Conference (2001)

  7. Mabe, J.H., Brown, J.K., Calkins, F.T.: Flight test of a shape memory alloy actuated adaptive trailing edge flap, Part 1. In: Proceedings of SMST 2014 the International Conference on Shape Memory and Superelastic Technologies (2014)

  8. Schürmann, H.: Konstruieren mit Faserverbundwerkstoffen, 1st edn. Springer, Berlin (2004)

    Google Scholar 

  9. Balta, J.A., Bosia, F., Michaud, V., Dunkel, G., Botsis, J., Månson, J.-A.: Smart composites with embedded shape memory alloy actuators and fibre Bragg grating sensors, activation and control. Smart Mater. Struct. 14(4), 457–465 (2005)

    Article  Google Scholar 

  10. O’Keane, J., de Oliveira, R., Michaud, V.J., Månson, J.-A.E.: Tailored processing of epoxy with embedded shape memory alloy wires. Smart Mater. Struct. 18(9), 95043 (2009)

    Article  Google Scholar 

  11. Daghia, F., Inman, D.J., Ubertini, F., Viola, E.: Shape memory alloy hybrid composite plates for shape and stiffness control. J. Intell. Mater. Syst. Struct. 19(5), 609–619 (2007)

    Article  Google Scholar 

  12. Daghia, F., Faiella, G., Antonucci, V., Giordano, M.: Thermomechanical modelling and experimental testing of a shape memory alloy hybrid composite plate. Adv. Sci. Technol. 59, 41–46 (2008)

    Article  Google Scholar 

  13. Tobushi, H., Hayashi, S., Sugimoto, Y., Date, K.: Two-way bending properties of shape memory composite with SMA and SMP. Materials 2(3), 1180–1192 (2009)

    Article  Google Scholar 

  14. Zhou, G., Lloyd, P.: Design, manufacture and evaluation of bending behaviour of composite beams embedded with SMA wires. Compos. Sci. Technol. 69(13), 2034–2041 (2009)

    Article  Google Scholar 

  15. Faiella, G., Antonucci, V., Daghia, F., Fascia, S., Giordano, M.: Fabrication and thermo-mechanical characterization of a shape memory alloy hybrid composite. J. Intell. Mater. Syst. Struct. 22(3), 245–252 (2011)

    Article  Google Scholar 

  16. Hübler, M., Nissle, S., Gurka, M., Breuer, U.: Load-conforming design and manufacturing of active hybrid fiber reinforced polymer structure with integrated shape memory alloy wires for actuation purposes. In: Proceedings of ACTUATOR 14 International Conference on New Actuator 23–25.06.2014, Bremen, Germany (2014)

  17. Lagoudas, D.C.: Shape Memory Alloys. Springer, Boston (2008)

    MATH  Google Scholar 

  18. Terriault, P., Brailovski, V.: Modeling of shape memory alloy actuators using Likhachev’s formulation. J. Intell. Mater. Syst. Struct. 22(4), 353–368 (2011)

    Article  Google Scholar 

  19. Panico, M., Brinson, L.C.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55(11), 2491–2511 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cosin, R., Catalano, F.M., Correa, L.G.N., Entz, R.M.U.: Aerodynamic analysis of multi-winglets for low air speed aircraft. In: Proceedings of 27th ICAS International Congress of the Aeronautical Sciences 27 (2010)

  21. Srikanth, G., Surendra, B.: Experimental investigation on the effect of multi-winglets. Int. J. Mech. Ind. Eng. 1(1), 43–46 (2011)

    Google Scholar 

  22. Klein, B.: FEM. Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau. Vieweg + Teubner, Wiesbaden (2010)

    Google Scholar 

  23. Hübler, M., Gurka, M., Schmeer, S., Breuer, U.P.: Performance range of SMA actuator wires and SMA–FRP structure in terms of manufacturing, modeling and actuation. Smart Mater. Struct. 22(9), 94002 (2013)

    Article  Google Scholar 

  24. Fumagalli, L., Butera, F., Coda, A.: SmartFlex® NiTi wires for shape memory actuators. J. Mater. Eng. Perform. 18(5–6), 691–695 (2009)

    Article  Google Scholar 

  25. Pagel, K., Bucht, A.: Numerische Simulation des Aktivierungsverhaltens von thermischen Formgedächtnislegierungen. Model Based Design Forum, Darmstadt, Germany, 26.05.2009 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hübler.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 22–24, 2015, Rostock, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hübler, M., Nissle, S., Gurka, M. et al. Fiber-reinforced polymers with integrated shape memory alloy actuation: an innovative actuation method for aerodynamic applications. CEAS Aeronaut J 7, 567–576 (2016). https://doi.org/10.1007/s13272-016-0209-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-016-0209-0

Keywords

Navigation