Skip to main content
Log in

Development and application of a pre-design tool for aero-engine combustors

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

A software tool was developed to design aero-engine combustors on a preliminary level. Only a small set of input parameters is required to design conventional as well as lean combustors. During the design calculation the combustor contour, the geometry of the desired cooling concept and the air flow distribution within the combustor are optimized. Optimization targets are to minimize the cooling air consumption with respect to the material temperature limits and to reach homogeneous material temperatures as well as a stable combustion. In the case of a staged burner the burner air and fuel fractions are optimized regarding minimal NO x production (qualitative) for the design condition. Off-design calculations on the basis of designed combustors can be executed for engine conditions other than take-off to calculate the altered conditions within the combustor. This paper shows the design and off-design process of the combustor tool in detail. In a second part application examples are given. The presented results show the capabilities of the tool for the pre-design of lean combustors with respect to the trade-off between the reduction of NO x emissions and the reduction of the fuel consumption as well as the capabilities for identifying potential cooling issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c d :

Discharge coefficient (–)

d :

Diameter (m)

Ma:

Mach number (–)

m = ρAiruAir/(ρGasuGas):

Blowing ratio (–)

p :

Pressure (Pa)

Δp st :

Static pressure drop (Pa)

Δp st,rel = Δp st/p 3 :

Relative static pressure drop (–)

R s :

Specific gas constant (J/kg/K)

Re:

Reynolds number (–)

r :

Radius (m)

s :

Slot height (m)

T :

Temperature (K)

t :

Thickness (m)

u:

Velocity (m/s)

V :

Volume (m3)

W :

Mass flow (kg/s)

μ:

Dynamic viscosity (Ns/m2)

ρ:

Density (kg/m3)

φ:

Empirical factor (–)

C:

Combustor

Cond:

Conduction

Conv:

Convection

Eff:

Effusion

Rad:

Radiation

Stoich:

Stoichiometric

Up:

Upstream

3:

Condition upstream the combustor

4:

Condition downstream the combustor

References

  1. Kurzke, J.: Advanced user friendly gas turbine performance calculations on a personal computer. ASME Paper 95-GT-147 (1995)

  2. Visser, W.P.J., Kogenhop, O., Oostveen, M.: A generic approach for gas turbine adaptive modelling. ASME Paper 2004-GT-53721 (2004)

  3. Alexiou, A., Baalbergen, E.H., Kogenhop, O., Mathioudakis, K., Arendsen, P.: Advanced capabilities for gas turbine engine performance simulations. ASME Paper 2007-GT-27086 (2007)

  4. Deidewig, F.: Ermittlung der Schadstoffemissionen im Unter- und Überschallflug. Institut für Antriebstechnik, DLR Forschungsbericht 98–10, ISSN 1434-8454 (1998)

  5. Litz, M., Seider, D., Bachmann, A., Kunde, M., Otten, T.: Integration framework for preliminary design tool chains. DLRK2011-241239, DGLR, Deutscher Luft- und Raumfahrtkongress Bremen, 27–29 September (2011)

  6. Lefebvre, A.H.: Gas turbine combustion. McGraw-Hill Book Company, ISBN 0-07-037029-X (1983)

  7. Dodds, W.J., Bahr, D. W.: Combustion system design. In: Mellor A.M (ed.) Design of modern gas turbine combustors. Academic Press, ISBN 0-12-490055-0 (1990)

  8. Stuttaford, P.J.: Preliminary gas turbine combustor design using a network approach. Ph.D. thesis, Cranfield University, England (1997)

  9. Rogero, J.M.: A genetic algorithms based optimisation tool for the preliminary design of gas turbine combustors. Ph.D. thesis, Cranfield University, England (2002)

  10. Wulff, A.: Entwicklung eines Verbrennungsmodells für Brennkammern von Fluggasturbinen. Dissertation, TU Berlin, Germany (2001)

  11. Tilston, J., Larkman, J., Plohr, M., Doepelheuer, A., Lischer, T., Zarzalis, N.: Future engine cycle prediction and emissions study. GRD1-2000-25218 (CYPRESS) final publishable report (2003)

  12. Pegemanyfar, N., Pfitzner, M., Eggels, R., von der Bank, R., Zedda, M.: Development of an automated preliminary combustion chamber design tool. ASME Paper GT2006-90430 (2006)

  13. Pegemanyfar, N., Pfitzner, M., Surace, M.: Automated CFD analysis within the preliminary combustor design system PRECODES utilizing improved cooling models. ASME Paper GT2007-27409 (2007)

  14. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4), 257–270 (1999)

    Article  Google Scholar 

  15. Storn, R.: On the usage of differential evolution for function optimization. NAFIPS 1996, Berkeley, pp. 519–523 (1996)

  16. Hansen, N., Niederberger, A., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans Evol Comput 13(1), 180–197 (2009)

    Article  Google Scholar 

  17. Blomeyer, M.: Entwicklung von Auslegungskriterien für die Mischzone einer luftgestuften Gasturbinen-Ringbrennkammer. Fortschritt-Berichte VDI, Energietechnik Reihe 6 Nr. 427, ISBN 3-18-342706-0 (1999)

  18. Bräunling, W.J.G.: Flugzeugtriebwerke. Springer, ISBN 3-540-67585-X (2004)

  19. Goodwin, D.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Caltech, Pasadena (2009). http://code.google.com/p/cantera

  20. Lee, C.-M., Kundu, K., Ghorashi, B.: Simplified Jet-A kinetic mechanism for combustion application. NASA-TM-105940 (1993)

  21. Lazik, W., Doerr, Th., Bake, S., Bank, R.v.d., Rackwitz, L.: Development of lean-burn low-NO x combustion technology at Rolls-Royce Deutschland. ASME Paper GT2008-51115 (2008)

  22. Lefebvre, A.H.: Flame radiation in gas turbine combustion chambers. Int J Heat Mass Transf 27, 1493–1510 (1984)

    Article  Google Scholar 

  23. Andreini, A., Ceccherini, A., Facchini, B., Turrini, F., Vitale, I.: Assessment of a set of numerical tools for the design of aero-engines combustors: study of a tubular test rig. ASME Paper GT2009-59539 (2009)

  24. Baldauf, S., Scheurlen, M., Schulz, A., Wittig, S.: Heat flux reduction from film cooling and correlation of heat transfer coefficients from thermographic measurements at engine like conditions. ASME Paper GT-2002-30181 (2002)

  25. Baldauf, S., Scheurlen, M., Schulz, A., Wittig, S.: Correlation of film cooling effectiveness from thermographic measurements at engine like conditions. ASME Paper GT-2002-30180 (2002)

  26. Martiny, M., Schulz, A., Wittig, S.: Mathematical model describing the coupled heat transfer in effusion cooled combustor walls. ASME Paper 97-GT-329 (1997)

  27. Hausen, H.: Extended equation for heat transfer in tubes at turbulent flow. In: Wärme- und Stoffübertragung 7, pp. 222–225. Springer (1974)

  28. Florschuetz, L.W., Metzger, D.E., Truman, C.R.: Jet array impingement with crossflow—correlation of streamwise resolved flow and heat transfer distributions. NASA Contractor Report 3373 (1981)

  29. Metzger, D.E., Fan, Z.X., Shepard, W.B.: Pressure loss and heat transfer through multiple rows of short pin fins. Heat Transf 3, 137–142 (1982)

    Google Scholar 

  30. Tacina, K.M., Lee, C.-M., Wey, C.: NASA Glenn high pressure low NO x emissions research. NASA/TM—2008-214974

  31. Baughcum, S.L., Tritz, T.G., Henderson, S. C., Pickett, D.C.: Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA Contractor Report 4700 (1996)

  32. Döpelheuer, A.: Anwendungsorientierte Verfahren zur Bestimmung von CO, HC und Ruß aus Luftfahrttriebwerken. Dissertation Ruhr-Universität Bochum (2002). DLR Forschungsbericht 2002

  33. Lefebvre, A.H.: Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions. J Aircr 21(11), 887–898 (1984)

    Article  Google Scholar 

  34. Lee, S.H., Le Dilosquer, M., Singh, R., Rycroft, M.J.: Further considerations of engine emissions from subsonic aircraft at cruise altitude. Atmos Environ 30(22), 3689–3695 (1996)

    Article  Google Scholar 

  35. Rizk, N.H., Mongia, H.C.: Emissions predictions of different gas turbine combustors. AIAA 94-0118 (1994)

  36. Allaire, D.L.: A physics-based emissions model for aircraft gas turbine combustors. MIT Libraries (2006). http://hdl.handle.net/1721.1/35584

  37. Martiny, M.: Wärmeübergang in effusionsgekühlten Flammrohrwänden. Dissertation Universität Karlsruhe, Cuvillier (1999)

    Google Scholar 

  38. Gerendas, M., Cadoret, Y., Wilhelmi, C., Machry, T., Knoche, R., Behrendt, T., Aumeier, T., Denis, S., Göring, J., Koch, D., Tushtev, K.: Improvement of oxide/oxide CMC and development of combustor and turbine components in the HIPOC program. ASME GT2011-45460 (2011)

Download references

Acknowledgments

The authors would like to thank Sören Klingenfuß for his contribution to the code of ComDAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tietz.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 27–29, 2011, Bremen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tietz, S., Behrendt, T. Development and application of a pre-design tool for aero-engine combustors. CEAS Aeronaut J 2, 111–123 (2011). https://doi.org/10.1007/s13272-011-0012-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-011-0012-x

Keywords

Navigation