Skip to main content
Log in

The effect of iron dextran on the transcriptome of pig hippocampus

  • Original Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The chain of events resulting from oxidative stress is still barely understood. The hippocampus is particularly vulnerable to oxidative stress. With the emergence of high-throughput sequencing, many different biological components can be discovered simultaneously. Using RNA-seq technology, we conducted a whole-transcriptome analysis of the hippocampi of piglets exposed to iron dextran (FeDex), a potent inducer of oxidation stress. The total hippocampal RNA from the piglets was sequenced, and 11.5 Gb of sequencing data were obtained. Regulatory molecules involved in oxidative stress were determined through the identification of 362 differentially expressed genes (DEGs). The functional analysis revealed that these DEGs were primarily involved in the defense response and responses to external stimuli. Furthermore, 76 neuropeptide gene transcripts and 60 neuropeptide receptor gene transcripts were identified in the hippocampus. Of these transcripts, the mRNA levels of six neuropeptide genes were significantly changed. Overall, this study describes the first use of RNA-seq to elucidate the transcriptomic changes in the piglet hippocampus caused directly by the injection of iron dextran, which enabled the characterization of the transcriptional response triggered by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adelman G, Smith BH (eds) (1999) Elsevier’s encyclopedia of neuroscience. Elsevier, Amsterdam, pp 99–104

    Google Scholar 

  • Asikainen TM, Raivio KO, Saksela M, Kinnula VL (1998) Expression and developmental profile of antioxidant enzymes in human lung and liver. Am J Respir Cell Mol 19:942–949

    Article  CAS  Google Scholar 

  • Balkan B, Keser A, Gozen O, Koylu EO, Dagci T, Kuhar MJ, Pogun S (2012) Forced swim stress elicits region-specific changes in CART expression in the stress axis and stress regulatory brain areas. Brain Res 1432:56–65

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biol Med 43:658–677

    Article  CAS  Google Scholar 

  • Castro AA, Moretti M, Casagrande TS, Martinello C, Petronilho F, Steckert AV, Guerrini R, Calo G, Dal Pizzol F, Quevedo J, Gavioli EC (2009) Neuropeptide S produces hyperlocomotion and prevents oxidative stress damage in the mouse brain: a comparative study with amphetamine and diazepam. Pharmacol Biochem Behav 91:636–642

    Article  CAS  PubMed  Google Scholar 

  • Ceccatelli S, Orazzo C (1993) Effect of different types of stressors on peptide messenger ribonucleic acids in the hypothalamic paraventricular nucleus. Acta Endocrinol-Buch 128:485–492

    CAS  Google Scholar 

  • Esteve-Codina A, Kofler R, Palmieri N, Bussotti G, Notredame C, Pérez-Enciso M (2011) Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMC Genom 12:552

    Article  CAS  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  CAS  PubMed  Google Scholar 

  • Favier A (1997) Oxidative stress: value of its demonstration in medical biology and problems posed by the choice of a marker. Ann Biol Clin 55:9–16

    CAS  Google Scholar 

  • Gammie SC, Truman JW (1999) Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J Exp Biol 202:343–352

    CAS  PubMed  Google Scholar 

  • Gan L, Xie LW, Zuo FY, Xiang ZH, He NJ (2015) Transcriptomic analysis of Rongchang pig brains and livers. Gene 560:96–106

    Article  CAS  PubMed  Google Scholar 

  • Gerdin E, Tyden O, Eriksson UJ (1985) The development of antioxidant enzymatic defense in the perinatal rat lung: activities of superoxide dismutase, glutathione peroxidase, and catalase. Pediatr Res 19:687–691

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hanada R, Nakazato M, Murakami N, Sakihara S, Yoshimatsu H, Toshinai K, Hanada T, Suda T, Kangawa K, Matsukura S (2001) A role for neuromedin U in stress response. Biochem Biophys Res Commun 289:225–228

    Article  CAS  PubMed  Google Scholar 

  • Harbuz MS, Lightman SL (1989) Responses of hypothalamic and pituitary mRNA to physical and psychological stress in the rat. J Endocrinol 122:705–711

    Article  CAS  PubMed  Google Scholar 

  • Honda HM, Korge P, Weiss JN (2005) Mitochondria and ischemia/reperfusion injury. Ann NY Acad Sci 1047:248–258

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Bartfai T (2012) Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to prof. Dieter Seebach. Chem Biodivers 9:2367–2387

    Article  CAS  PubMed  Google Scholar 

  • Hubert GW, Jones DC, Moffett MC, Rogge G, Kuhar MJ (2008) CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem Pharmacol 75:57–62

    Article  CAS  PubMed  Google Scholar 

  • Hunter RG, Philpot K, Vicentic A, Dominguez G, Hubert GW, Kuhar MJ (2004) CART in feeding and obesity. Trends Endocrinol Metab 15:454–459

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Shirayama Y, Iwata M, Nakagome LK (2007) Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor. Hippocampus 30:615–624

    Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Article  Google Scholar 

  • Langie SA, Knaapen AM, Houben JM, van Kempen FC, de Hoon JP, Gottschalk RW, Godschalk RW, van Schooten FJ (2007) The role of glutathione in the regulation of nucleotide excision repair during oxidative stress. Toxicol Lett 168:302–309

    Article  CAS  PubMed  Google Scholar 

  • Langie SA, Kowalczyk P, Tudek B, Zabielski R, Dziaman T, Olin´ski R, van Schooten FJ, Godschalk RWL (2010) The effect of oxidative stress on nucleotide-excision repair in colon tissue of newborn piglets. Mutat Res Fund Mol M 695:75–80

    Article  CAS  Google Scholar 

  • Lathe R (2001) Hormones and the hippocampus. J Endocrinol 169:27

    Article  Google Scholar 

  • Lauss M, Kriegner A, Vierlinger K, Noehammer C (2007) Characterization of the drugged human genome. Pharmacogenomics 8:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Zhu X, O’neill MJ, Webber K, Casadesus G, Marlatt M, Raina AK, Perry G, Smith MA (2004) The role of metabotropic glutamate receptors in Alzheimer’s disease. Acta Neurobiol Exp 64:89–98

    Google Scholar 

  • Lightman SL, Young WS (1987) Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal. Nature 328:543–545

    Article  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radical Res 44:479–496

    Article  CAS  Google Scholar 

  • Lipin´ski P, Starzyn´ski R, Canonne-Hergaux F, Tudek B, Olin´ski R, Kowalczyk P, Dziaman T, Thibaudeau O, Gralak MA, Smuda E, Wolin´ ski J, Usin´ska A, Zabielski R (2010) Benefits and risks of iron supplementation in anemic neonatal pigs. Am J Pathol 177:1233–1243

    Article  Google Scholar 

  • Luo Y (2006) Alzheimer’s disease, the nematode Caenorhabditis elegans, and Ginkgo biloba leaf extract. Life Sci 78:2066–2072

    Article  CAS  PubMed  Google Scholar 

  • Mao P (2013) Oxidative stress and its clinical applications in dementia. J Neurodegener Dis 2013:15

    Google Scholar 

  • Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations bydietary and other environmental factors. In: Herceg Z, Ushijima T (eds) Advances in Genetics, vol 71. Academic Press, Burlington, pp 1–39

    Google Scholar 

  • McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehinto AC, Prucha MS, Colli-Dulac RC, Krollc KJ, Lavellec CM, Barberc DS, Vulped CD, Denslowc ND (2014) Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides). Aquat Toxicol 152:186–194

    Article  CAS  PubMed  Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biol Med 23:783–792

    Article  CAS  Google Scholar 

  • Menon R, Zhang Q, Zhang Y, Fermin D, Bardeesy N, DePinho RA, Lu CX, Hanash SM, Omenn GS, States DJ (2009) Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer. Cancer Res 69:300–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MA, Magnusdottir E, Kuo TC, Tunyaplin C, Harper J, Arnold SJ, Calame K, Robertson EJ, Bikoff EK (2009) Blimp-1/Prdm1 alternative promoter usage during mouse development and plasma cell differentiation. Mol Cell Biol 29:5813–5827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri R (2011) Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res 21:1260–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter K, Southey B, Sweedler J, Rodriguez-Zas S (2012) First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genom 13:582

    Article  CAS  Google Scholar 

  • Ramos SF, Mendonça BP, Leffa DD, Pacheco R, Damiani AP, Hainzenreder G, Petronilho F, Dal-Pizzol F, Guerrini R, Calo G, Gavioli EC, Boeck CR, de Andrade VM (2012) Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice. Pharmacol Biochem Behav 103:197–203

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008) CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9:747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberger J, Petrovics G, Buzas B (2001) Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kB. J Neurochem 79:35–44

    Article  CAS  PubMed  Google Scholar 

  • Sha D, Wang L, Zhang J, Qian L, Li Q, Li J, Qian J, Gu SS, Han LL, Han L (2014) Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivationin neurons. Brain Res 1582:107–113

    Article  CAS  PubMed  Google Scholar 

  • Speckmann B, Grune T (2015) Epigenetic effects of selenium and their implications for health. Epigenetics 10:179–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Wu J, Wickramasinghe P, Pal S, Gupta R, Bhattacharyya A, Agosto-Perez FJ, Showe LC, Huang THM, Davuluri RV (2011) Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq. Nucleic Acids Res 39:190–201

    Article  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C 27:120–139

    Article  CAS  Google Scholar 

  • Vicentic A, Jones DC (2007) The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J Pharmacol Exp Ther 320:499–506

    Article  CAS  PubMed  Google Scholar 

  • Vilahur N, Vahter M, Broberg K (2015) The epigenetic effects of prenatal cadmium exposure. Early life environmental health (J Sunyer, Section Editor). Curr Envir Health Rpt 2:195–203

    Article  CAS  Google Scholar 

  • Wiehager S, Beiderbeck DI, Gruber SH, El-Khoury A, Wamsteeker J, Neumann ID, Petersen A, Mathe AA (2009) Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol Dis 34:375–380

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at singlenucleotide resolution. Nature 453:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43:487–497

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Su J, Yao Y, Lei Z, Zhang G, Li X (2010) The regulatory mechanism of neuromedin S on luteinizing hormone in pigs. Anim Reprod Sci 122:367–374

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Lin X, Su J, Yang G, Hou Y, Lei Z (2009) Cloning and distribution of neuropeptide S and its receptor in the pig. Neuropeptides 43:465–481

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq:accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zawia NH, Lahiri DK, Cardozo-Pelaez F (2009) Epigenetics, oxidative stress, and Alzheimer disease. Free Radical Biol Med 46:1241–1249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 31201807), Fundamental Research Funds for the Central Universities (No. XDJK2016C055), Doctoral Fund of Southwest University (No. 2013Bsro5), Youth fund of Rongchang Campus of Southwest University (No. 20700416), Natural Science Foundation of Chongqing (No. cstc2016jcyjA0282), Science and Technology Innovation Foundation of Social Livelihood of the People of Chongqing (No. cstc2016shmszx80063) and Innovation Teams Foundation in University (No. CXTDG201602003). LG conceived of the study and developed the study design. LG carried out the analysis and drafted the manuscript. BY and HM participated in the study design and drafting of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Gan.

Ethics declarations

Conflict of interest

Ling Gan declares that she has no conflict of interest. Binyu Yang declares that he has no conflict of interest. Hongyuan Mei declares that he has no conflict of interest.

Human and animal rights

The experimental procedures followed the actual law of animal protection that was approved by the Animal Care Advisory Committee of Southwest University, China.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Yang, B. & Mei, H. The effect of iron dextran on the transcriptome of pig hippocampus. Genes Genom 39, 1–14 (2017). https://doi.org/10.1007/s13258-016-0469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0469-4

Keywords

Navigation