Skip to main content
Log in

Region-specific changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of Alzheimer’s disease model mice

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in the central nervous system and its role in development of Alzheimer’s disease (AD) is largely unknown. To identify AD-related changes in the TRPV4 channel distribution in the central nervous system, we investigated the distribution and level changes of TRPV4 in brains of AD model mice. The expressions of TRPV4 in the brain of control mice, early stage and late stage AD model mice were compared using immunohistochemistry with antibodies recognizing TRPV4 on free floating sections and in addition we performed western blotting to supplement our findings. TRPV4 immunoreactivity was significantly increased in the cerebral cortex, hippocampal formation, striatum and thalamus of AD model mice compared with control mice. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of early stage and late stage AD model mice. In addition, TRPV4 immunoreactivity was increased in the hippocampal formation, striatum and thalamus of late stage AD model mice. This is the first demonstration of AD-related increases in TRPV4 expression in the brain and it may provide useful data for investigating the pathogenesis of AD-related neurodegenerative diseases. The regulation of TRPV4 in AD mouse model and its functional significance require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichiling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  CAS  PubMed  Google Scholar 

  • Baglietto-Vargas D, Moreno-Gonzalez I, Sanchez-Varo R, Jimenez S, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Romero-Acebal M, Ruano D, Vizuete M et al (2010) Calretinin interneurons are early targets of extracellular amyloid-beta pathology in PS1/AbetaPP Alzheimer mice hippocampus. J Alzheimers Dis 21:119–132

    CAS  PubMed  Google Scholar 

  • Benham CD, Davis JB, Randall AD (2002) Vanilloid and TRP channels: a family of lipid-gated cation channels. Neuropharmacology 42:873–888

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:39959

    Article  Google Scholar 

  • Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Surmeier DJ, Reiner A (1999) NMDA and non-NMDA receptormediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp Neurol 159:283–296

    Article  CAS  PubMed  Google Scholar 

  • Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, Kinghorn I, See CG, Costigan M, Anand P, Woolf CJ et al (2001) Identification and characterization of a novel human vanilloid receptorlike protein, VRL-2. Physiol Genomics 4:165–174

    CAS  PubMed  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721

    Article  CAS  PubMed  Google Scholar 

  • Everaerts W, Gevaert T, Nilius B, De Ridder D (2008) On the origin of bladder sensing: Tr(i)ps in urology. Neurourol Urodyn 27:264–273

    Article  CAS  PubMed  Google Scholar 

  • Guler AD, Lee HS, Iida TJ (2002) Heat-evoked activation of the ion channel, TRPV4. Neurosci 22:6408–6414

    CAS  Google Scholar 

  • Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191

    Article  CAS  PubMed  Google Scholar 

  • Ho R, Ortiz D, Shea TB (2001) Amyloid-beta promotes calcium influx and neurodegeneration via stimulation of L voltage-sensitive calcium channels rather than NMDA channels in cultured neurons. J Alzheimers Dis 3:479–483

    CAS  PubMed  Google Scholar 

  • Holscher C (1998) Possible causes of Alzheimer’s disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis 5:129–141

    Article  CAS  PubMed  Google Scholar 

  • Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32:215–224

    Article  CAS  PubMed  Google Scholar 

  • Kelly BL, Ferreira A (2006) Beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem 281:28079–28089

    Article  CAS  PubMed  Google Scholar 

  • Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, Tanzi R, Jones K, Albert MS (2002) MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58:1188–1196

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim H, Lee SG, Choi BH, Kim YH, Huh PW, Lee KH, Han H, Rha HK (2003) Amyloid beta peptide (Abeta42) activates PLC-delta1 promoter through the NF-kappaB binding site. Biochem Biophys Res Commun 310:904–909

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Choe SY (2014) Age-related changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of rats. J Mol Histol 45:497–505

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Cho YJ, Kim J, Kim N, Kang BG, Cha CI, Joo KM (2010) Region-specific changes in the immunoreactivity of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC2, and PAC1 receptor) in the aged rat brains. Brain Res 1351:32–40

    Article  CAS  PubMed  Google Scholar 

  • Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B et al (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  CAS  PubMed  Google Scholar 

  • Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H (2000) Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium 28:1–21

    Article  CAS  PubMed  Google Scholar 

  • Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Gonzalez I, Baglietto-Vargas D, Sanchez-Varo R, Jimenez S, Trujillo-Estrada L, Sanchez-Mejias E, Del Rio JC, Torres M, Romero-Acebal M, Ruano D et al (2009) Extracellular amyloid-beta and cytotoxic glial activation induce significant entorhinal neuron loss in young PS1(M146L)/APP(751SL) mice. J Alzheimers Dis 18:755–776

    CAS  PubMed  Google Scholar 

  • Mutai H, Heller S (2003) Vertebrate and invertebrate TRPV-like mechanoreceptor. Cell Calcium 33:471–478

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol 286:195–205

    Article  Google Scholar 

  • Pascale A, Etcheberrigaray R (1999) Calcium alterations in Alzheimer’s disease: pathophysiology, models and therapeutic opportunities. Pharmacol Res 39:81–88

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Ferreiro E, Cardoso SM, de Oliveira CR (2004) Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer’s disease. J Mol Neurosci 23:97–104

    Article  CAS  PubMed  Google Scholar 

  • Ramos B, Baglietto-Vargas D, Del Rio JC, Moreno-Gonzalez I, Santa-Maria C, Jimenez S, Caballero C, Lopez-Tellez JF, Khan ZU, Ruano D et al (2006) Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease. Neurobiol Aging 27:1658–1672

    Article  CAS  PubMed  Google Scholar 

  • Ronnback A, Zhu S, Dillner K, Aoki M, Lilius L, Naslund J, Winblad B, Graff C (2011) Progressive neuropathology and cognitive decline in a single Arctic APP transgenic mouse model. Neurobiol Aging 32:280–292

    Article  PubMed  Google Scholar 

  • Saul A, Sprenger F, Bayer TA, Wirths O (2013) Accelerated tau pathology with synaptic and neuronal loss in a novel triple transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34:2564–2573

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  CAS  PubMed  Google Scholar 

  • Takuma K, Yan SS, Stern DM, Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J Pharmacol Sci 97:312–316

    Article  CAS  PubMed  Google Scholar 

  • Vennekens R, Owsianik G, Nilius B (2008) Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des 14:18–31

    Article  CAS  PubMed  Google Scholar 

  • Vetrivel KS, Zhang YW, Xu H, Thinakaran G (2006) Pathological and physiological functions of presenilins. Mol Neurodegener 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    Article  CAS  PubMed  Google Scholar 

  • Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, Clark IA, Abdipranoto A, Vissel B (2013) Neuroinflammation and neuronal loss precede Abeta plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One 8:e59586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G et al (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Korea Foundation for the Advancement of Science and Creativity (KOFAC) Grant funded by the Korea government (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Young Choe.

Ethics declarations

Conflicts of Interest

The authors have no conflicts of interest to disclose.

Ethical approval

All animal experiments were approved by the appropriate Institutional Review Boards of the Seoul National University College of Medicine (Seoul, Korea; SNU-140212-2) and conducted in accordance with National Institutes of Health Guide for the Care Use of Laboratory Animals (NIH publication No. 86-23, revised in 1996).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.C., Choe, S.Y. Region-specific changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of Alzheimer’s disease model mice. Genes Genom 38, 629–637 (2016). https://doi.org/10.1007/s13258-016-0389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0389-3

Keywords

Navigation