Skip to main content
Log in

ETS family protein GABP is a novel co-factor strongly associated with genomic YY1 binding sites in various cell lines

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The Yin Yang 1 (YY1) protein is a ubiquitously expressed transcription factor involved in gene activation, repression, and genomic imprinting. Recent studies have revealed genome-wide target loci of YY1 in different cell types using chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-seq). However, it is unclear how the same YY1 controls different sets of genes in various cell types. To unveil potential co-factors of YY1, we reanalyzed YY1 and CTCF ChIP-seq data sets generated by the ENCODE consortium for various cell lines. As reported previously, CCCTC-binding factor (CTCF) is one of the most frequently associated co-factors around genomic YY1 binding sites in all cases. When it comes to strong YY1 binding sites, however, binding motifs of the E26 transformation-specific (ETS) family proteins are significantly prevalent. Indeed, meta-analysis of the ETS transcription factor GABP ChIP-seq performed in various cell types confirmed the strong genomic association between YY1 and GABP. Particularly, genes around common YY1 binding sites that are defined as invariable strong binding across cell lines were significantly associated with GABP in almost all cell types examined. In addition, the association between YY1 and GABP is strongly conserved in primate genomes such as chimpanzee, orangutan and baboon. Gene ontology analysis revealed that the YY1-GABP co-regulated genes are significantly associated with Alzheimer’s disease in human. Overall, the meta-analysis of available YY1, CTCF, and GABP ChIP-seq data showed a novel genomic association between YY1 and GABP, suggesting that the YY1–GABP co-regulatory network is common across multiple cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. doi:10.1093/nar/gks1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Deléhouzée S, Yoshikawa T, Sawa C, Sawada J, Ito T, Omori M, Wada T, Yamaguchi Y, Kabe Y, Handa H (2005) GABP, HCF-1 and YY1 are involved in Rb gene expression during myogenesis. Genes Cells 10:717–731

    Article  PubMed  Google Scholar 

  • Donohoe ME, Zhang LF, Xu N, Shi Y, Lee JT (2007) Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol Cell 25:43–56

    Article  CAS  PubMed  Google Scholar 

  • Du K, Leu JI, Peng Y, Taub R (1998) Transcriptional up-regulation of the delayed early gene HRS/SRp40 during liver regeneration. Interactions among YY1, GA-binding proteins, and mitogenic signals. J Biol Chem 273:35208–35215

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, Cooper GM, Reddy TE, Crawford GE, Myers RM (2013) Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell 52:25–36

    Article  CAS  PubMed  Google Scholar 

  • Gokhman D, Livyatan I, Sailaja BS, Melcer S, Meshorer E (2013) Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nat Struct Mol Biol 20:119–126

    Article  CAS  PubMed  Google Scholar 

  • Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947

    Article  CAS  PubMed  Google Scholar 

  • Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G et al (2013) DNA-binding specificities of human transcription factors. Cell 152:327–339

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Chung JH, Kim J (2009) Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites. Nucleic Acids Res 37:2003–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang K, Kim J, Chung JH, Lee D (2011) Decoding the genome with an integrative analysis tool: combinatorial CRM decoder. Nucleic Acids Res 39:e116. doi:10.1093/nar/gkr516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang K, Robinson GW, Hennighausen L (2013) Comprehensive meta-analysis of signal transducers and activators of transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules. BMC Genom 14:4. doi:10.1186/1471-2164-14-4

    Article  CAS  Google Scholar 

  • Kim J, Kim JD (2008) In vivo YY1 knockdown effects on genomic imprinting. Hum Mol Genet 17:391–401

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kollhoff A, Bergmann A, Stubbs L (2003) Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum Mol Genet 12:233–245

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database Collaboration (2012) The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 40:D54–D56. doi:10.1093/nar/gkr854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41:e108. doi:10.1093/nar/gkt214

    Article  PubMed Central  PubMed  Google Scholar 

  • Michaud J, Praz V, James Faresse N, Jnbaptiste CK, Tyagi S, Schutz F, Herr W (2013) HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. Genome Res 23:907–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson GW, Kang K, Yoo KH, Tang Y, Zhu BM, Yamaji D, Colditz V, Jang SJ, Gronostajski RM, Hennighausen L (2014) Coregulation of genetic programs by the transcription factors NFIB and STAT5. Mol Endocrinol 28:758–767

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwalie PC, Ward MC, Cain CE, Faure AJ, Gilad Y, Odom DT, Flicek P (2013) Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes. Genome Biol 14:R148. doi:10.1186/gb-2013-14-12-r148

    Article  PubMed Central  PubMed  Google Scholar 

  • Shi Y, Lee JS, Galvin KM (1997) Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta 1332:F49–F66

    CAS  PubMed  Google Scholar 

  • Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  PubMed  Google Scholar 

  • Voss TC, Hager GL (2014) Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 15:69–81

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Yang XY, Schmidt T, Chinenov Y, Wang R, Martin ME (1997) GA-binding protein-dependent transcription initiator elements. Effect of helical spacing between polyomavirus enhancer a factor 3(PEA3)/Ets-binding sites on initiator activity. J Biol Chem 272:29060–29067

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zlatanova J, Caiafa P (2009) CTCF and its protein partners: divide and rule? J Cell Sci 122:1275–1284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the members of the computational biology laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keunsoo Kang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Oh, S. & Kang, K. ETS family protein GABP is a novel co-factor strongly associated with genomic YY1 binding sites in various cell lines. Genes Genom 38, 119–125 (2016). https://doi.org/10.1007/s13258-015-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0358-2

Keywords

Navigation