Skip to main content
Log in

Correlation between the DNA methyltransferase (Dnmt) gene family and genome-wide 5-methylcytosine (5mC) in rotifer, copepod, and fish

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

DNA methyltransferases (DNMTs) are an enzyme family that catalyzes the transfer of a methyl group to DNA for a wide variety of biological functions. To determine whether the number and composition of the Dnmt gene family affects the 5-methylcytosine (5mc) ratio at the genome level, genome-wide 5mc ratios from three marine animals, the mangrove killifish (Kryptolebias marmoratus), an intertidal copepod (Tigriopus japonicus), and a monogonont rotifer (Brachionus koreanus), were analyzed in each organism after the cloning of Dnmt genes. Lineage- and teleost-specific gene evolution was observed in the vertebrate Dnmt3 gene family, while unique gene expansion was found in the T. japonicus Dnmt1 gene family. However, the rotifer did not have any apparent homologue of Dnmt1 or Dnmt3 in its genome. This gene information was highly supportive of genome-wide 5mc levels in the three marine animals. Therefore, the absence or presence of the Dnmt gene family could be an important evolutionary parameter of how this could affect genome-wide epigenetic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MD, Grummitt CG, Hilcenko C, Min SY, Tonkin LM, Johnson CM, Freund SM, Bycroft M, Warren AJ (2006) Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J 25:4503–4512

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276:32282–32287

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos S, Saraste M, Djinović Carugo K (1998) Structural comparisons of calponin homology domains: implications for actin binding. Structure 6:1419–1431

    Article  PubMed  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Callebaut I, Courvalin JC, Mornon JP (1999) The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446:189–193

    Article  PubMed  CAS  Google Scholar 

  • Campos C, Valente LM, Fernandes JM (2012) Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development. Gene 500:93–100

    Article  PubMed  CAS  Google Scholar 

  • Capuano F, Mülleder M, Kok R, Blom HJ, Ralser M (2014) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86:3697–3702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen T, Ueda Y, Dodge JE, Wang Z, Li E (2003) Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23:5594–5605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen T, Mally A, Ozden S, Chipman JK (2010) Low doses of the carcinogen furan alter cell cycle and apoptosis gene expression in rat liver independent of DNA methylation. Environ Health Perspect 118:1597–1602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng X (1995) Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318

    Article  PubMed  CAS  Google Scholar 

  • Choi BJ, Yoon JH, Choi WS, Kim O, Nam SW, Lee JY, Park WS (2013) GKN1 and miR-185 are associated with CpG island methylator phenotype in gastric cancers. Mol Cell Toxicol 9:227–233

    Article  CAS  Google Scholar 

  • Gao F, Liu X, Wu XP, Wang XL, Gong D, Lu H, Xia Y, Song Y, Wang J, Du J, Liu S, Han X, Tang Y, Yang H, Jin Q, Zhang X, Liu M (2012) Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biol 13:R100

    Article  PubMed  PubMed Central  Google Scholar 

  • Glastad KM, Hunt BG, Yi SV, Goodisman MA (2011) DNA methylation in insects: on the brink of the epigenomic era. Insect Mol Biol 20:553–565

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  PubMed  CAS  Google Scholar 

  • Hung M-S, Karthikeyan N, Huang B, Koo HC, Kiger J, Shen CJ (1999) Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc Natl Acad Sci USA 96:11940–11945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hwang D-S, Suga K, Sakakura Y, Park HG, Hagiwara A, Rhee J-S, Lee J-S (2013) Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae). Mitochondrial DNA 25:29–30

    Article  PubMed  CAS  Google Scholar 

  • Hwang D-S, Lee B-Y, Kim H-S, Lee M-C, Kyung D-H, Om A-S, Rhee J-S, Lee J-S (2014) Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus. BMC Genomics 15:993

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iyer LM, Tahiliani M, Rao A, Aravind L (2009) Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8:1698–1710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jabbari K, Cacciò S, Païs de Barros JP, Desgrès J, Bernardi G (1997) Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene 205:109–118

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R (1997) DNA methylation and imprinting: why bother? Trends Genet 13:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33S:245–254

    Article  CAS  Google Scholar 

  • Jeltsch A, Nellen W, Lyko F (2006) Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 31:306–308

    Article  PubMed  CAS  Google Scholar 

  • Jeong C-B, Kim B-M, Lee J-S, Rhee J-S (2014) Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicus. BMC Genomics 15:651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jeong C-B, Kim B-M, Choi H-J, Baek I, Souissi S, Park HG, Lee J-S, Rhee J-S (2015) Genome-wide identification and transcript profile of the whole cathepsin superfamily in the intertidal copepod Tigriopus japonicus. Dev Comp Immunol 53:1–12

    Article  PubMed  CAS  Google Scholar 

  • Jung S-O, Lee Y-M, Park T-J, Park HG, Hagiwara A, Leung KMY, Dahms H-W, Lee W, Lee J-S (2006) The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. J Exp Mar Biol Ecol 333:251–262

    Article  CAS  Google Scholar 

  • Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, Rassoulzadegan M (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9:e1003498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim H-S, Lee B-Y, Won E-J, Han J, Hwang D-S, Park HG, Lee J-S (2015) Identification of xenobiotic biodegradation and metabolism-related genes in the copepod Tigriopus japonicus whole transcriptome analysis. Mar Genomics. doi:10.1016/j.margen

    Google Scholar 

  • Lee J-S, Rhee J-S, Kim R-O, Hwang D-S, Han J, Choi B-S, Park GS, Kim I-C, Park HG, Lee Y-M (2010) The copepod Tigriopus japonicus genomic DNA information (574 Mb) and molecular anatomy. Mar Environ Res 69:S21–S23

    Article  PubMed  CAS  Google Scholar 

  • Lee J-S, Kim R-O, Rhee J-S, Han J, Hwang D-S, Choi B-S, Lee CJ, Yoon Y-D, Lim J-S, Lee Y-M, Park GS, Hagiwara A, Choi I-Y (2011) Sequence analysis of genomic DNA (680 Mb) by GS-FLX-Titanium sequencer in the monogonont rotifer Brachionus ibericus. Hydrobiologia 662:65–75

    Article  CAS  Google Scholar 

  • Lee B-Y, Kim H-S, Hwang D-S, Won E-J, Choi B-S, Choi I-Y, Park HG, Rhee J-S, Lee J-S (2015) Whole transcriptome analysis of the monogonont rotifer Brachionus koreanus provides molecular resources for developing biomarkers of carbohydrate metabolism. Comp Biochem Physiol D 14:33–41

    CAS  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Book  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Raddatz G, Guzzardo PM, Olova N, Fantappié MR, Rampp M, Schaefer M, Reik W, Hannon GJ, Lyko F (2013) Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc Natl Acad Sci USA 110:8627–8631

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA (2010) Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Biol Chem 285:4110–4121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rhee J-S, Lee J-S (2014) Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus. Mar Pollut Bull 85:532–541

    Article  PubMed  CAS  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  PubMed  CAS  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol 17:1469–1475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A (1982) The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett 146:148–152

    Article  PubMed  CAS  Google Scholar 

  • Vandegehuchte MB, Lemière F, Janssen CR (2009) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Physiol C 150:343–348

    CAS  Google Scholar 

  • Varriale A, Bernardi G (2006) DNA methylation and body temperature in fishes. Gene 385:111–121

    Article  PubMed  CAS  Google Scholar 

  • Wojciechowski M, Rafalski D, Kucharski R, Misztal K, Maleszka J, Bochtler M, Maleszka R (2014) Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol 4:8

    Article  CAS  Google Scholar 

  • Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D (2015) DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol 60:435–452

    Article  PubMed  CAS  Google Scholar 

  • Yi S (2012) Birds do it, bees do it, worms and ciliates do it too: DNA methylation from unexpected corners of the tree of life. Genome Biol 13:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their helpful comments and also thank Prof. Hans-U. Dahms for his comments on the revised manuscript. This work was supported by a grant by the Marine Biotechnology Program (PJT200620, Genome analysis of marine organisms and development of functional application) funded by the Ministry of Oceans and Fisheries, Korea, to Jae-Seong Lee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Sung Rhee or Jae-Seong Lee.

Ethics declarations

Compliance of bioethics

The fish were reared in accordance with the Animal Welfare Ethical Committee of the Sungkyunkwan University.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (PPTX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BM., Mirbahai, L., Mally, A. et al. Correlation between the DNA methyltransferase (Dnmt) gene family and genome-wide 5-methylcytosine (5mC) in rotifer, copepod, and fish. Genes Genom 38, 13–23 (2016). https://doi.org/10.1007/s13258-015-0333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0333-y

Keywords

Navigation