Skip to main content
Log in

Identification of novel trans-crosstalk between histone modifications via genome-wide analysis of maximal deletion effect

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Crosstalk between epigenetic variables including histone modification produces diverse combinatorial patterns each of which has specific biological roles. Therefore, identification of causal relationships among epigenetic variables such as histone modifications, chromatin regulations, and DNA methylations has substantial impact on better understanding of complex epigenetic mechanisms. In this regard, development of effective and simple algorithms to recognize casual relationships among them is required. Here, we present a new method calculating maximal deletion effect (MDE) of one histone modification to determine whether two histone modifications have crosstalks. After combining genome-wide histone modification densities with gene expression changes in mutant strains that inhibit a specific modification, we evaluated MDE to examine causal relationships between histone H3 methylations and H4 acetylations. By calculating MDE of H4 acetyl sites, we identified new trans-crosstalks between H4 lysine 12th/16th acetylations and H3K79 tri-methylation, and these relationships were successfully confirmed by immunoblot analysis in Saccharomyces cerevisiae. Importantly, these trans-crosstalks showed correlative patterns with gene activation in both yeast and human CD4+ T cells. We expect that MDE can be generally applicable to identify various causal relationships among many epigenetic variables and useful for characterizing complex modification patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Carmen AA, Milne L, Grunstein M (2002) Acetylation of the yeast histone H4N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem 277:4778–4781

    Article  CAS  PubMed  Google Scholar 

  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 102:5501–5506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28:817–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fingerman IM, Li HC, Briggs SD (2007) A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway. Genes Dev 21:2018–2029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu X et al (2014) Histone cross-talk connects protein phosphatase 1alpha (PP1alpha) and histone deacetylase (HDAC) pathways to regulate the functional transition of bromodomain-containing 4 (BRD4) for inducible gene expression. J Biol Chem 289:23154–23167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kharchenko PV et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Jung I (2009) Regulatory patterns of histone modifications to control the DNA methylation status at CpG islands. Interdiscip Bio Central 1:4

    Google Scholar 

  • Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733

    Article  CAS  PubMed  Google Scholar 

  • Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16:857–860

    Article  CAS  PubMed  Google Scholar 

  • Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S, Sanderson BW, Delventhal KM, Bradford WD, Staehling-Hampton K, Shilatifard A (2008) A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 15:881–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Connor TR, Wyrick JJ (2007) ChromatinDB: a database of genome-wide histone modification patterns for Saccharomyces cerevisiae. Bioinformatics 23:1828–1830

    Article  PubMed  Google Scholar 

  • Oh S, Jeong K, Kim H, Kwon CS, Lee D (2010) A lysine-rich region in Dot1p is crucial for direct interaction with H2B ubiquitylation and high level methylation of H3K79. Biochem Biophys Res Commun 399:512–517

    Article  CAS  PubMed  Google Scholar 

  • Pokholok DK et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    Article  CAS  PubMed  Google Scholar 

  • Ram O et al (2011) Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147:1628–1639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  CAS  PubMed  Google Scholar 

  • Stephens MA (1970) Use of the Kolmogorov–Smirnov, Cramér-Von mises and related statistics without extensive tables. J R Stat Soc Ser B (Methodological) 115–122

  • Su AI et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teng L, Tan K (2012) Finding combinatorial histone code by semi-supervised biclustering. BMC Genom 13:301

    Article  CAS  Google Scholar 

  • Turner BM (2008) Simplifying a complex code. Nat Struct Mol Biol 15:542–544

    Article  CAS  PubMed  Google Scholar 

  • Ucar D, Hu Q, Tan K (2011) Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering. Nucl Acids Res 39:4063–4075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Unnikrishnan A, Gafken PR, Tsukiyama T (2010) Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 17:430–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vlaming H, van Welsem T, de Graaf EL, Ontoso D, Altelaar AF, San-Segundo PA, Heck AJ, van Leeuwen F (2014) Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo. EMBO Rep 15:1077–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu L, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, Dou Y (2013) ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell 49:1108–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu H, Zhu S, Zhou B, Xue H, Han JD (2008) Inferring causal relationships among different histone modifications and gene expression. Genome Res 18:1314–1324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ali Shilatifard and his colleagues for the SHIMA library and Chul-Hwan Lee for technical advice on the wet experiments. This work was supported by Chung Moon Soul Center for BioInformation and BioElectronics (CMSC) and by the Ministry of Education, Science and Technology (Bioinformatics Pipeline for Stem Cell Epigenomics).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsup Kim.

Additional information

Inkyung Jung and Junseong Park have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, I., Park, J., Choi, C. et al. Identification of novel trans-crosstalk between histone modifications via genome-wide analysis of maximal deletion effect. Genes Genom 37, 693–701 (2015). https://doi.org/10.1007/s13258-015-0298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0298-x

Keywords

Navigation