Skip to main content
Log in

Identification of L1ASP-derived chimeric transcripts in lung cancer

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Long interspersed elements (LINEs or L1 s) are an abundant class of autonomous retrotransposons in the human genome. Full-length L1 elements have two transcriptional regulatory regions: an internal sense promoter and an antisense promoter (ASP). The ASP of L1 elements can generate chimeric RNAs via direct transcription of adjacent genomic sequences. Chimeric transcripts derived from the L1ASP are highly represented, but the extent to which this occurs is largely unknown. Using a genome-wide L1 chimera display (LCD) technique, we have isolated 4 L1 chimeric transcripts (LCTs) in the lung cancer genome. Then, we analyzed the structural characteristics of the 4 LCTs using bioinformatics tool. Expression patterns of the 4 LCTs were analyzed by reverse transcription polymerase chain reaction using normal and lung cancer tissues. LCT24 and LCT25 showed higher expression in lung cancer tissue than in normal tissue. These results suggest that the genome-wide LCD technique could be of great use for further study to find cancer markers via cancer-associated LCTs and to understand cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn K, Gim JA, Ha HS, Han K, Kim HS (2013) The novel MER transposon-derived miRNAs in human genome. Gene 512:422–428

    Article  CAS  PubMed  Google Scholar 

  • Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ (1997) Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev 11:2494–2509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolland DJ, Wood AL, Johnston CM, Bunting SF, Morgan G, Chakalova L, Fraser PJ, Corcoran AE (2004) Antisense intergenic transcription in V(D)J recombination. Nat Immunol 5:630–637

    Article  CAS  PubMed  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HHJr (2003) Hot L1 s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Yu SL, Li KC, Yang PC (2012) Biomarkers and transcriptome profiling of lung cancer. Respirology 17:620–626

    Article  PubMed  Google Scholar 

  • Cruickshanks HA, Tufarelli C (2009) Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 94:397–406

    Article  CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. NatGenet 35:41–48

    CAS  Google Scholar 

  • Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367

    Article  CAS  PubMed  Google Scholar 

  • Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P (2000) Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 5:377–386

    Article  CAS  PubMed  Google Scholar 

  • Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HHJr (2011) Retrotransposition of marked SVA elements by human L1 s in cultured cells. Hum Mol Genet 20:3386–3400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Kazazian HHJr (1998) Mobile elements and disease. Curr Opin Genet Dev 8:343–350

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HHJr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Cordaux R, Han K, Wang J, Hedges DJ, Liang P, Batzer MA (2007) Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons. Gene 390:18–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin L, Wang Z, Prescott MS, van Dekken H, Thomas DG, Giordano TJ, Chang AC, Orringer MB, Gruber SB, Moran JV et al (2006) Multiple forms of genetic instability within a 2-Mb chromosomal segment of 3q26.3-q27 are associated with development of esophageal adenocarcinoma. Genes Chromosom Cancer 45:319–331

    Article  CAS  PubMed  Google Scholar 

  • Maestre J, Tchénio T, Dhellin O, Heidmann T (1995) mRNA retroposition in human cells: processed pseudogene formation. EMBO J 14:6333–6338

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mallardo M, Poltronieri P, D’Urso OF (2008) Non-protein coding RNA biomarkers and differential expression in cancers: a review. J Exp Clin Cancer Res 27:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Mätlik K, Redik K, Speek M (2006) L1 antisense promoter drives tissue-specific transcription of human genes. J Biomed Biotechnol 2006:71753

    Article  PubMed Central  PubMed  Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HHJr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  • Nigumann P, Redik K, Mätlik K, Speek M (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79:628–634

    Article  CAS  PubMed  Google Scholar 

  • Ocak S, Sos ML, Thomas RK, Massion PP (2009) High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications. Eur Respir J 34:489–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HHJr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proudfoot NJ (1986) Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature 322:562–565

    Article  CAS  PubMed  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HHJr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  CAS  PubMed  Google Scholar 

  • Schmidt LH, Spieker T, Koschmieder S, Schäffers S, Humberg J, Jungen D, Bulk E, Hascher A, Wittmer D, Marra A et al (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol 6:1984–1992

    Article  PubMed  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21:1973–1985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Kimhi S, Howard G, Eden A, Lyko F (2010) Demethylation of a LINE-1 antisense promoter in the cMet locus impairs Met signalling through induction of illegitimate transcription. Oncogene 29:5775–5784

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The biospecimens for this study were provided by the Pusan National University Hospital, a member of the National Biobank of Korea, which is supported by the Ministry of Health, Welfare and Family Affairs. All samples derived from the National Biobank of Korea were obtained with informed consent under institutional review board-approved protocols. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A4A01001616).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2014_220_MOESM1_ESM.pptx

Figure S1. Scheme of the L1 chimera display (LCD) technique. (A) Schematic representation of the LCD technique. First, cDNA was synthesized from total RNA in normal lung and lung cancer tissues. Second, the cDNA was digested with a restriction enzyme that does not cut in the L1 antisense promoter (ASP) region, and complementary adapters were ligated with the digested cDNA. Last, nested PCR was carried out using L1-specific primers and linker primers. (B) Visualization of LCD products from lung normal and tumor tissues. GAPDH (120 bp) indicates the positive control. M indicates the size marker. (PPTX 124 kb)

13258_2014_220_MOESM2_ESM.ppt

Figure S2. Hairpin structure analysis of the MER20 element in LCT 24. (A) Palindromic MER20 secondary structure was predicted using the RNAfold program. The minimum free energy (mfe) was -58.60 kcal/mol, and the sequence size was 226 bp. (B) The precursor form of MER20-derived miRNA is presented, and the mature form is indicated by the line. (PPT 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JR., Jung, YD., Kim, YJ. et al. Identification of L1ASP-derived chimeric transcripts in lung cancer. Genes Genom 36, 853–859 (2014). https://doi.org/10.1007/s13258-014-0220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0220-y

Keywords

Navigation