Skip to main content

Advertisement

Log in

Elevated Serotonin Interacts with Angiotensin-II to Result in Altered Valve Interstitial Cell Contractility and Remodeling

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

While the valvulopathic effects of serotonin (5HT) and angiotensin-II (Ang-II) individually are known, it was not clear how 5HT and Ang-II might interact, specifically in the context of the mechanobiological responses due to altered valve mechanics potentiated by these molecules. In this context, the hypothesis of this study was that increased serotonin levels would result in accelerated progression toward disease in the presence of angiotensin-II-induced hypertension. C57/BL6 J mice were divided into four groups and subcutaneously implanted with osmotic pumps containing: PBS (control), 5HT (2.5 ng/kg/min), Ang-II (400 ng/kg/min), and 5HT + Ang-II (combination). Blood pressure was monitored using the tail cuff method. Echocardiography was performed on the mice before surgery and every week thereafter to assess ejection fraction. After three weeks, the mice were sacrificed and their hearts excised, embedded and sectioned for analysis of the aortic valves via histology and immunohistochemistry. In separate experiments, porcine valve interstitial cells (VICs) were directly stimulated with 5HT (10−7 M), Ang-II (100 nM) or both and assayed for cellular contractility, cytoskeletal organization and collagen remodeling. After three weeks, average systolic blood pressure was significantly increased in the 5HT, Ang-II and combination groups compared to control. Echocardiographic analysis demonstrated significantly reduced ejection fraction in Ang-II and the combination groups. H&E staining demonstrated thicker leaflets in the combination groups, suggesting a more aggressive remodeling process. Picrosirius red staining and image analysis suggested that the Ang-II and combination groups had the largest proportion of thicker collagen fibers. VIC orientation, cellular contractility and collagen gene expression was highest for the 5HT + Ang-II combination treatment compared to all other groups. Overall, our results suggest that 5HT and Ang-II interact to result in significantly detrimental alteration of function and remodeling in the valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alford, P. W., A. W. Feinberg, S. P. Sheehy, and K. K. Parker. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31:3613–3621, 2010.

    Article  Google Scholar 

  2. Alford, P. W., A. P. Nesmith, J. N. Seywerd, A. Grosberg, and K. K. Parker. Vascular smooth muscle contractility depends on cell shape. Integr. Biol. 3:1063–1070, 2011.

    Article  Google Scholar 

  3. Balachandran, K., P. W. Alford, J. Wylie-Sears, J. A. Goss, A. Grosberg, J. Bischoff, et al. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc. Natl. Acad. Sci. USA 108:19943–19948, 2011.

    Article  Google Scholar 

  4. Balachandran, K., M. A. Bakay, J. M. Connolly, X. Zhang, A. P. Yoganathan, and R. J. Levy. Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann. Thorac. Surg. 92:147–153, 2011.

    Article  Google Scholar 

  5. Balachandran, K., S. Hussain, C. H. Yap, M. Padala, A. H. Chester, and A. P. Yoganathan. Elevated cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensitive 5-HT(2A) receptor-dependent pathway. Cardiovasc. Pathol. 21:206–213, 2012.

    Article  Google Scholar 

  6. Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.

    Article  Google Scholar 

  7. Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 177:49–57, 2010.

    Article  Google Scholar 

  8. Butcher, J. T., and R. M. Nerem. Porcine aortic valve interstitial cells in three-dimensional culture: comparison of phenotype with aortic smooth muscle cells. J Heart Valve Dis. 13:478–485, 2004; ((discussion 85–86)).

    Google Scholar 

  9. Butcher, J. T., A. M. Penrod, A. J. Garcia, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24:1429–1434, 2004.

    Article  Google Scholar 

  10. Chin, B. B., S. D. Metzler, A. Lemaire, A. Curcio, S. Vemulapalli, K. L. Greer, et al. Left ventricular functional assessment in mice: feasibility of high spatial and temporal resolution ECG-gated blood pool SPECT. Radiology 245:440–448, 2007.

    Article  Google Scholar 

  11. Cole, W. G., D. Chan, A. J. Hickey, and D. E. Wilcken. Collagen composition of normal and myxomatous human mitral heart valves. Biochem. J. 219:451–460, 1984.

    Article  Google Scholar 

  12. Connolly, J. M., M. A. Bakay, I. S. Alferiev, R. C. Gorman, J. H. Gorman, 3rd, H. S. Kruth, et al. Triglycidyl amine crosslinking combined with ethanol inhibits bioprosthetic heart valve calcification. Ann. Thorac. Surg. 92:858–865, 2011.

    Article  Google Scholar 

  13. Connolly, H. M., J. L. Crary, M. D. McGoon, D. D. Hensrud, B. S. Edwards, W. D. Edwards, et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337:581–588, 1997.

    Article  Google Scholar 

  14. Connolly, H. M., H. V. Schaff, C. J. Mullany, J. Rubin, M. D. Abel, and P. A. Pellikka. Surgical management of left-sided carcinoid heart disease. Circulation 104:I36–I40, 2001.

    Article  Google Scholar 

  15. Cosyns, B., S. Droogmans, R. Rosenhek, and P. Lancellotti. Drug-induced valvular heart disease. Heart 99:7–12, 2013.

    Article  Google Scholar 

  16. Cote, N., A. Mahmut, D. Fournier, M. C. Boulanger, C. Couture, J. P. Despres, et al. Angiotensin receptor blockers are associated with reduced fibrosis and interleukin-6 expression in calcific aortic valve disease. Pathobiology 81:15–24, 2014.

    Article  Google Scholar 

  17. Crabos, M., M. Roth, A. W. Hahn, and P. Erne. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J. Clin. Investig. 93:2372–2378, 1994.

    Article  Google Scholar 

  18. Crowley, S. D., S. B. Gurley, M. J. Herrera, P. Ruiz, R. Griffiths, A. P. Kumar, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc. Natl. Acad. Sci. USA 103:17985–17990, 2006.

    Article  Google Scholar 

  19. De Mello, W. C., and E. D. Frohlich. On the local cardiac renin angiotensin system. Basic and clinical implications. Peptides 32:1774–1779, 2011.

    Article  Google Scholar 

  20. Eriksen, H. A., J. Satta, J. Risteli, M. Veijola, P. Vare, and Y. Soini. Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis 189:91–98, 2006.

    Article  Google Scholar 

  21. Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.

    Article  Google Scholar 

  22. Fitzgerald, L. W., T. C. Burn, B. S. Brown, J. P. Patterson, M. H. Corjay, P. A. Valentine, et al. Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol. Pharmacol. 57:75–81, 2000.

    Google Scholar 

  23. Gao, S., D. Ho, D. E. Vatner, and S. F. Vatner. Echocardiography in Mice. Curr. Protoc. Mouse Biol. 1:71–83, 2011.

    Google Scholar 

  24. Glenn, D. J., M. C. Cardema, W. Ni, Y. Zhang, Y. Yeghiazarians, D. Grapov, et al. Cardiac steatosis potentiates angiotensin II effects in the heart. Am. J. Physiol. Heart Circ. Physiol. 308:H339–H350, 2015.

    Article  Google Scholar 

  25. Gould, R. A., and J. T. Butcher. Isolation of valvular endothelial cells. J. Vis. Exp. 46:e2158, 2010.

    Google Scholar 

  26. Goumans, M. J., A. J. van Zonneveld, and P. ten Dijke. Transforming growth factor beta-induced endothelial-to-mesenchymal transition: a switch to cardiac fibrosis? Trends Cardiovasc. Med. 18:293–298, 2008.

    Article  Google Scholar 

  27. Govender, M. M., and A. Nadar. A subpressor dose of angiotensin II elevates blood pressure in a normotensive rat model by oxidative stress. Physiol. Res. 64:153–159, 2015.

    Google Scholar 

  28. Gustafsson, B. I., K. Tommeras, I. Nordrum, J. P. Loennechen, A. Brunsvik, E. Solligard, et al. Long-term serotonin administration induces heart valve disease in rats. Circulation 111:1517–1522, 2005.

    Article  Google Scholar 

  29. Haggerty, C. M., A. C. Mattingly, M. C. Gong, W. Su, A. Daugherty, and B. K. Fornwalt. Telemetric blood pressure assessment in angiotensin II-infused ApoE-/- Mice: 28 day natural history and comparison to tail-cuff measurements. PLoS ONE 10:e0130723, 2015.

    Article  Google Scholar 

  30. Hinz, B., G. Celetta, J. J. Tomasek, G. Gabbiani, and C. Chaponnier. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 12:2730–2741, 2001.

    Article  Google Scholar 

  31. Horton, R. E., M. Yadid, M. L. McCain, S. P. Sheehy, F. S. Pasqualini, S. J. Park, et al. Angiotensin II induced cardiac dysfunction on a chip. PLoS ONE 11:e0146415, 2016.

    Article  Google Scholar 

  32. Hutcheson, J. D., L. M. Ryzhova, V. Setola, and W. D. Merryman. 5-HT(2B) antagonism arrests non-canonical TGF-beta1-induced valvular myofibroblast differentiation. J. Mol. Cell Cardiol. 53(5):707–714, 2012.

    Article  Google Scholar 

  33. Hutcheson, J. D., V. Setola, B. L. Roth, and W. D. Merryman. Serotonin receptors and heart valve disease–it was meant 2B. Pharmacol. Ther. 132:146–157, 2011.

    Article  Google Scholar 

  34. Jaffre, F., P. Bonnin, J. Callebert, H. Debbabi, V. Setola, S. Doly, et al. Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ. Res. 104:113–123, 2009.

    Article  Google Scholar 

  35. Jian, B., J. Xu, J. Connolly, R. C. Savani, N. Narula, B. Liang, et al. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am. J. Pathol. 161:2111–2121, 2002.

    Article  Google Scholar 

  36. Kako, K., H. P. Krayenbuehl, E. Luethy, and R. Hegglin. Hemodynamic effects of angiotensin in intact dogs. Am. J. Cardiol. 14:362–369, 1964.

    Article  Google Scholar 

  37. Keidar, S., J. Attias, R. Heinrich, R. Coleman, and M. Aviram. Angiotensin II atherogenicity in apolipoprotein E deficient mice is associated with increased cellular cholesterol biosynthesis. Atherosclerosis 146:249–257, 1999.

    Article  Google Scholar 

  38. Krishnamurthy, V. K., A. M. Opoka, C. B. Kern, F. Guilak, D. A. Narmoneva, and R. B. Hinton. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biol. 31:197–205, 2012.

    Article  Google Scholar 

  39. Lam, N. T., T. J. Muldoon, K. P. Quinn, N. Rajaram, and K. Balachandran. Valve interstitial cell contractile strength and metabolic state are dependent on its shape. Integr. Biol. 8:1079–1089, 2016.

    Article  Google Scholar 

  40. Liu, A. C., and A. I. Gotlieb. Transforming growth factor-beta regulates in vitro heart valve repair by activated valve interstitial cells. Am. J. Pathol. 173:1275–1285, 2008.

    Article  Google Scholar 

  41. Liu, A. C., V. R. Joag, and A. I. Gotlieb. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–1418, 2007.

    Article  Google Scholar 

  42. Mann, D. A., and F. Oakley. Serotonin paracrine signaling in tissue fibrosis. Biochim. Biophys. Acta 1832:905–910, 2013.

    Article  Google Scholar 

  43. Mercado, C. P., and F. Kilic. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol Interv. 10:231–241, 2010.

    Article  Google Scholar 

  44. Paul, M., A. Poyan Mehr, and R. Kreutz. Physiology of local renin-angiotensin systems. Physiol. Rev. 86:747–803, 2006.

    Article  Google Scholar 

  45. Pavone, L. M., P. Mithbaokar, V. Mastellone, L. Avallone, P. Gaspar, V. Maharajan, et al. Fate map of serotonin transporter-expressing cells in developing mouse heart. Genesis 45:689–695, 2007.

    Article  Google Scholar 

  46. Pavone, L. M., and R. A. Norris. Distinct signaling pathways activated by “extracellular” and “intracellular” serotonin in heart valve development and disease. Cell Biochem. Biophys. 67:819–828, 2013.

    Article  Google Scholar 

  47. Pavone, L. M., A. Spina, R. Lo Muto, D. Santoro, V. Mastellone, and L. Avallone. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT. Biochem. Biophys. Res. Commun. 377:419–422, 2008.

    Article  Google Scholar 

  48. Pavone, L. M., A. Spina, S. Rea, D. Santoro, V. Mastellone, P. Lombardi, et al. Serotonin transporter gene deficiency is associated with sudden death of newborn mice through activation of TGF-beta1 signalling. J. Mol. Cell. Cardiol. 47:691–697, 2009.

    Article  Google Scholar 

  49. Porter, K. E., and N. A. Turner. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther. 123:255–278, 2009.

    Article  Google Scholar 

  50. Rajamannan, N. M. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler. Thromb. Vasc. Biol. 31:2777–2778, 2011.

    Article  Google Scholar 

  51. Rajamannan, N. M., F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: Calcific aortic valve disease-2011 update. Circulation 124:1783–1791, 2011.

    Article  Google Scholar 

  52. Reudelhuber, T. L., K. E. Bernstein, and P. Delafontaine. Is angiotensin II a direct mediator of left ventricular hypertrophy? Time for another look. Hypertension 49:1196–1201, 2007.

    Article  Google Scholar 

  53. Richards, J., I. El-Hamamsy, S. Chen, Z. Sarang, P. Sarathchandra, M. H. Yacoub, et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am. J. Pathol. 182:1922–1931, 2013.

    Article  Google Scholar 

  54. Roth, B. L. Drugs and valvular heart disease. N. Engl. J. Med. 356:6–9, 2007.

    Article  Google Scholar 

  55. Rothman, R. B., and M. H. Baumann. Serotonergic drugs and valvular heart disease. Expert Opin. Drug Saf. 8:317–329, 2009.

    Article  Google Scholar 

  56. Samuel, C. S., E. N. Unemori, I. Mookerjee, R. A. Bathgate, S. L. Layfield, J. Mak, et al. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145:4125–4133, 2004.

    Article  Google Scholar 

  57. Senchenkova, E. Y., J. Russell, L. D. Almeida-Paula, J. W. Harding, and D. N. Granger. Angiotensin II-mediated microvascular thrombosis. Hypertension 56:1089–1095, 2010.

    Article  Google Scholar 

  58. Singh, P., T. W. Fletcher, Y. Li, N. J. Rusch, and F. Kilic. Serotonin uptake rates in platelets from angiotensin II-induced hypertensive mice. Health 5:31–39, 2013.

    Article  Google Scholar 

  59. Syed, F., A. Diwan, and H. S. Hahn. Murine echocardiography: a practical approach for phenotyping genetically manipulated and surgically modeled mice. J. Am. Soc. Echocardiogr. 18:982–990, 2005.

    Article  Google Scholar 

  60. Tandon, I., A. Razavi, P. Ravishankar, A. Walker, N. M. Sturdivant, N. T. Lam, et al. Valve interstitial cell shape modulates cell contractility independent of cell phenotype. J. Biomech. 49(14):3289–3297, 2016.

    Article  Google Scholar 

  61. Van Camp, G., A. Flamez, B. Cosyns, C. Weytjens, L. Muyldermans, M. Van Zandijcke, et al. Treatment of Parkinson’s disease with pergolide and relation to restrictive valvular heart disease. Lancet 363:1179–1183, 2004.

    Article  Google Scholar 

  62. van Kats, J. P., A. H. Danser, J. R. van Meegen, L. M. Sassen, P. D. Verdouw, and M. A. Schalekamp. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 98:73–81, 1998.

    Article  Google Scholar 

  63. Waltenberger, J., L. Lundin, K. Oberg, E. Wilander, K. Miyazono, C. H. Heldin, et al. Involvement of transforming growth factor-beta in the formation of fibrotic lesions in carcinoid heart disease. Am. J. Pathol. 142:71–78, 1993.

    Google Scholar 

  64. Watts, S. W. 5-HT in systemic hypertension: foe, friend or fantasy? Clin. Sci. (Lond.) 108:399–412, 2005.

    Article  Google Scholar 

  65. Xu, J., B. Jian, R. Chu, Z. Lu, Q. Li, J. Dunlop, et al. Serotonin mechanisms in heart valve disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. Am. J. Pathol. 161:2209–2218, 2002.

    Article  Google Scholar 

  66. Yap, C. H., H. S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298:H395–H405, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

The study was funded by the University of Arkansas Honors College Grant and Arkansas Biosciences Institute. We also thank Dr. Zaharoff and his graduate students at the University of Arkansas for their assistance with the in vivo mouse model.

Conflict of interest

All authors declare no competing interests.

Human Studies

No human studies were carried out by the authors for this article.

Animal Studies

All in vivo mouse experiments were approved by the Institutional Animal Care and Use Committee at the University of Arkansas and conducted in accordance with the NIH Guide for Care and Use of Laboratory Animals (National Research Council). Pig hearts from the abattoir were obtained and used in accordance with local regulations and with the approval of the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Balachandran.

Additional information

Associate Editors Hanjoong Jo, Craig A. Simmons, and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, J., Diaz, N., Tandon, I. et al. Elevated Serotonin Interacts with Angiotensin-II to Result in Altered Valve Interstitial Cell Contractility and Remodeling. Cardiovasc Eng Tech 9, 168–180 (2018). https://doi.org/10.1007/s13239-017-0298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0298-x

Keywords

Navigation