Skip to main content

Advertisement

Log in

Vascular Prostheses Based on Nanofibers from Aliphatic Copolyamide

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Tubular grafts based on nanofibers of copolymer of ε-caprolactam and hexamethylendiaminadipate were obtained by the electrospinning method. The strength of materials based on the dry nanofibers was 6.2 MPa with elongation at break of 133%, or 7.5 MPa and 299% in saline, respectively. The pressure value at which liquid started seeping through the tube wall was P = 10 kPa. Absence of cytotoxicity was proved, as well as adhesion and proliferation of mesenchymal stem cells on the surface. Tubes with inner diameter of 1 mm were tested in vivo in rat abdominal aorta. A layer of endothelial cells was shown to form on the inner side of the prosthesis after 30 days. There was no evidence of stenosis or dilatation of the prosthesis after 14 months with observation of endothelial and subendothelial layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Armentano, I., M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym. Degrad. Stab. 95:2126–2146, 2010.

    Article  Google Scholar 

  2. Battiston, K. G., B. Ouyang, R. S. Labow, C. A. Simmons, and J. P. Santerre. Monocyte/macrophage cytokine activity regulates vascular smooth muscle cell function within a degradable polyurethane scaffold. Acta Biomater. 10(3):1146–1155, 2014.

    Article  Google Scholar 

  3. Baumgartner, P. K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 36:71–79, 1971.

    Article  Google Scholar 

  4. Begovac, P. C., R. C. Thomson, J. L. Fisher, A. Hughson, and A. Gällhagen. Improvements in GORE-TEX vascular graft performance by Carmeda Bio Active surface heparin immobilization. Eur. J. Vasc. Endovasc. Surg. 25(5):432–437, 2003.

    Article  Google Scholar 

  5. Bernard, M. C., and O. Brien. Microvascular Reconstructive Surgery. Edinburgh: Churchill Livingstone, p. 91, 1977.

    Google Scholar 

  6. Boccafoschi, F., J. Habermehl, S. Vesentini, and D. Mantovani. Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials 26:7410–7417, 2005.

    Article  Google Scholar 

  7. Butson, R., and V. Sattinrar. Nonreversed and in situ vein grafts. Ann. Surg. 51:771–779, 1985.

    Article  Google Scholar 

  8. Bykova, I., V. Weinhardt, A. Kashkarova, S. Lebedev, T. Baumbach, V. Pichugin, K. Zaitsev, and I. Khlusov. Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation. J. Mater. Sci. Mater. Med. 25(8):1843–1852, 2014.

    Article  Google Scholar 

  9. Chung, S., N. P. Ingle, G. A. Montero, S. H. Kim, and M. W. King. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 6:1958–1967, 2010.

    Article  Google Scholar 

  10. Davies, M. G., and P. O. Hagen. Pathophysiology of vein graft failure: a review. Eur. J. Vasc. Endovasc. Surg. 9:7–18, 1995.

    Article  Google Scholar 

  11. Dobrovolskaya, I. P., P. V. Popryadukhin, V. E. Yudin, et al. Structure and properties of porous films based on aliphatic copolyamide developed for cellular technologies. J. Mater. Sci. Mater. Med. 26(1):1–10, 2015.

    Article  Google Scholar 

  12. Geiger, G. Vascular grafts in below-knee femoro-popliteal bypass. J. Cardiovasc. Surg. 25:523–529, 1984.

    Google Scholar 

  13. Harskamp, R. E., R. D. Lopes, C. E. Baisden, R. J. Winter, and J. H. Alexander. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann. Surg. 257(5):824–833, 2013.

    Article  Google Scholar 

  14. Hassantash, S. A., B. Bikdeli, S. Kalantarian, M. Sadeghian, and H. Afshar. Pathophysiology of aortocoronary saphenous vein bypass graft disease. Asian Cardiovasc. Thorac. Ann. 16:331–338, 2008.

    Article  Google Scholar 

  15. Kannan, R. Y., H. J. Salacinski, P. E. Butler, G. Hamilton, and A. M. Seifalian. Current status of prosthetic bypass grafts: a review. J. Biomed. Mater. Res. B Appl. Biomater. 74(1):570–581, 2005.

    Article  Google Scholar 

  16. Kim, F. Y., G. Marhefka, N. J. Ruggiero, S. Adams, and D. J. Whellan. Saphenous vein graft disease: review of pathophysiology, prevention, and treatment. Cardiol. Rev. 21:101–109, 2013.

    Article  Google Scholar 

  17. Konig, G., et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550, 2009.

    Article  Google Scholar 

  18. Lamm, P., G. Juchem, S. Milz, M. Schuffenhauer, and B. Reichart. Autologous endothelialized vein allograft: a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 104:108–114, 2001.

    Article  Google Scholar 

  19. Larsen, C. C., F. Kligman, C. Tang, K. Kottke-Marchant, and R. E. Marchant. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials 28(24):3537–3548, 2007.

    Article  Google Scholar 

  20. Leon, L., and H. P. Greisler. Vascular grafts. Expert Rev. Cardiovasc. Ther. 1:581–594, 2003.

    Article  Google Scholar 

  21. Leon, L., and H. P. Greisler. Vascular grafts. Expert Rev. Cardiovasc. Ther. 1(4):581–594, 2003.

    Article  Google Scholar 

  22. Nerem, R. M., and D. Seliktar. Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3:225–243, 2001.

    Article  Google Scholar 

  23. Park, K. M., Y. W. Kim, S. S. Yang, and D. I. Kim. Comparisons between prosthetic vascular graft and saphenous vein graft in femoro-popliteal bypass. Ann. Surg. Treat. Res. 87:35–40, 2014.

    Article  Google Scholar 

  24. Roh, J. D., G. N. Nelson, M. P. Brennan, T. L. Mirensky, T. Yi, T. Hazlett, et al. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29(10):1454–1463, 2008.

    Article  Google Scholar 

  25. Sabiston, A. The Biological Basis of Modern Surgical Practice. Philadelphia: W.B. Saunders, pp. 203–218, 1997.

    Google Scholar 

  26. Taylor, L. M., J. M. Edwards, and J. M. Porter. Present status of reversed vein bypass grafting: five-year results of a modern series. J. Vasc. Surg. 11:193–205, 1990.

    Article  Google Scholar 

  27. Tschoeke, B., T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann, V. Ella, S. Jorg, S. M. Kellomaki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. A 15(8):326–331, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Russian Science Foundation under contract grant #14-03-00003. The authors would like to thank Prof. Textor Marcus for discussions and assistance in preparing the manuscript.

Conflict of interest

We declare that there is no conflict of interest with any organization regarding the material discussed in this manuscript.

Statement of Human Studies

No human studies in this study.

Statement of Animal Studies

We declare that the study submitted to Cardiovascular Engineering and Technology complies with the principles laid down in the Declaration of Helsinki. Animal research approved by the Animal Care and Use Committee (IACUC) of Gateway Medical Innovation Center (Shanghai, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Dobrovolskaya.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popryadukhin, P.V., Popov, G.I., Dobrovolskaya, I.P. et al. Vascular Prostheses Based on Nanofibers from Aliphatic Copolyamide. Cardiovasc Eng Tech 7, 78–86 (2016). https://doi.org/10.1007/s13239-015-0234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0234-x

Keywords

Navigation