Skip to main content

Advertisement

Log in

Effect of Calcification Modulus and Geometry on Stress in Models of Calcified Atherosclerotic Plaque

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Large calcifications often develop in advanced atherosclerotic plaques. Prior computational studies showed these macrocalcifications to stabilize arterial wall stress with calcification moduli (E calc) of 2.5 MPa. However, recent nanoindentation studies measured E calc as 10–25 GPa, suggesting underestimation by up to 104 in previous models. This study investigated the effects of E calc and calcification geometry on stress in models of atherosclerotic plaque, with the modifying factor of fibrous component constitutive relation. Stress was calculated in idealized plane-strain finite element models of pressurized coronary arteries containing calcified lesions. Lesions were modeled as arc-shaped, circular, and elliptical regions with varying lumen separation, length, and thickness. E calc varied from 1.0 MPa to 10 GPa. Various orthotropic and hyperelastic constitutive relations for arterial wall and fibrous plaque were assigned, representing a range of literature values. In all models, stress concentration at the calcification-fibrous plaque interface increased with increasing E calc, with highest stresses in orthotropic models for higher Poisson’s ratios and lower radial and circumferential moduli. This effect was more pronounced in arc-shaped calcifications and was highly sensitive to geometry, with peak stress dependent on calcification distance from the lumen and increasing dramatically with increased length and decreased thickness. This study indicates the importance of using accurate material properties and geometries in models of atherosclerotic arteries. Results suggest calcification geometry, rather than calcification area, is a better predictor of high stresses in the arterial cross section and that some macrocalcifications, instead of providing a stabilizing influence, may predispose a plaque to rupture at the calcified interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Alexopoulos, N., and P. Raggi. Calcification in atherosclerosis. Nat. Rev. Cardiol. 6:681–688, 2009.

    Article  Google Scholar 

  2. Barrett, S. R. H., M. P. F. Sutcliffe, S. Howarth, Z.-Y. Li, and J. H. Gillard. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42:1650–1655, 2009.

    Article  Google Scholar 

  3. Beckman, J. A., J. Ganz, M. A. Creager, P. Ganz, and S. Kinlay. Relationship of clinical presentation and calcification of culprit coronary artery stenosis. Arterioscler. Thromb. Vasc. Biol. 21:1618–1622, 2001.

    Article  Google Scholar 

  4. Bertazzo, S., E. Gentleman, K. L. Cloyd, A. H. Chester, M. H. Yacoub, and M. M. Stevens. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat. Mater. 12:576–583, 2013.

    Google Scholar 

  5. Boresi, A. P., and R. J. Schmidt. Advanced Mechanics of Materials. New York: Wiley, 2002.

    Google Scholar 

  6. Bradji, A., and E. Holzbecher. On the convergence order of COMSOL solutions. Proceedings of the COMSOL Conference, Grenoble, France, 2007.

  7. Burke, A. P., D. K. Weber, F. D. Kolodgie, A. Farb, A. J. Taylor, and R. Virmani. Pathophysiology of calcium deposition in coronary arteries. Herz 26:239–244, 2001.

    Article  Google Scholar 

  8. Canham, P. B., E. A. Talman, H. M. Finlay, and J. G. Dixon. Medial collagen organization in human arteries of the heart and brain by polarized light microscopy. Connect. Tissue Res. 26:121–134, 1991.

    Article  Google Scholar 

  9. Carr, S., A. Farb, W. H. Pearce, R. Virmani, and J. S. Yao. Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J. Vasc. Surg. 23(5):755–765, 1996.

    Article  Google Scholar 

  10. Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions—a structural analysis with histopathological correlation. Circulation 87:1179–1187, 1993.

    Article  Google Scholar 

  11. Delfino, A., N. Stergiopulos, J. E. Moore, Jr., and J. J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.

    Article  Google Scholar 

  12. Ebenstein, D. M., D. Coughlin, J. Chapman, and L. A. Pruitt. Nanomechanical characterization of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. A 91:1028–1037, 2009.

    Article  Google Scholar 

  13. Fitzgerald, P. J., T. A. Ports, and P. G. Yock. Contribution of localized calcium deposits to dissection after angioplasty. An observational study using intravascular ultrasound. Circulation 86:64–70, 1992.

  14. Fung, Y. C. Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213:1532–1544, 1967.

    Google Scholar 

  15. Go, A. S., D. Mozzaffarian, V. L. Roger, E. J. Benjamin, J. D. Beery, W. B. Borden, et al. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 127:e6–e245, 2013.

    Article  Google Scholar 

  16. Holzapfel, G. A., and R. W. Ogden. Constitutive modeling of arteries. Proc. R. Soc. A 466:1551–1597, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hoshino, T., L. A. Chow, J. J. Hsu, A. A. Perlowski, M. Abedin, J. Tobis, Y. Tintut, A. K. ML, W. S. Klug, and L. L. Demer. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am. J. Physiol. Heart Circ. Physiol. 297:H802–H810, 2009.

    Google Scholar 

  18. Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056, 2001.

    Article  Google Scholar 

  19. Kwee, R. M. Systematic review on the association between calcification in carotid plaques and clinical ischemic symptoms. J. Vasc. Surg. 51:1015–1025, 2010.

    Article  Google Scholar 

  20. Lally, C., A. J. Reid, and P. J. Prendergast. Elastic behavior of procine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32:1355–1364, 2004.

    Article  Google Scholar 

  21. Lee, R. T., S. G. Richardson, H. M. Loree, A. J. Grodzinsky, S. A. Gharib, F. J. Schoen, and N. Pandian. Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging. An in vitro study. Arterioscler. Thromb. 12:1–5, 1992.

    Article  Google Scholar 

  22. Li, Z. Y., S. Howarth, T. Tang, M. Graves, J. U-King-Im, and J. H. Gillard. Does calcium deposition play a role in the stability of atheroma? Location may be the key. Cerebrovasc. Dis. 24:452–459, 2007.

    Article  Google Scholar 

  23. Li, Z. Y., S. Howarth, R. A. Trivedi, J. M. U-King-Im, M. J. Graves, A. Brown, L. Wang, and J. H. Gillard. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39:2611–2622, 2006.

    Article  Google Scholar 

  24. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.

    Article  Google Scholar 

  25. Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. Vasc. Biol. 14:230–234, 1994.

    Article  Google Scholar 

  26. Makris, G. C., A. N. Nicolaides, X. Y. Xu, and G. Geroulakos. Introduction to the biomechanics of carotid plaque pathogenesis and rupture: review of the clinical evidence. Br. J. Radiol. 83:729–735, 2010.

    Article  Google Scholar 

  27. Maldonado, N., K.-A. Adreanne, Y. Vengrenyuk, D. Laudier, J. T. Fallon, R. Virmani, L. Cardoso, and S. Weinbaum. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 303:H619–H628, 2012.

    Google Scholar 

  28. Marra, S. P., C. P. Daghlian, M. F. Fillinger, and F. E. Kennedy. Elemental composition, morphology and mechanical properties of calcified deposits obtained from abdominal aortic aneurysms. Acta Biomater. 2:515–520, 2006.

    Article  Google Scholar 

  29. Mauriello, A., F. Servadei, G. Sangiorgi, L. Anemona, E. Giacobbi, and L. G. Spagnoli. Asymptomatic carotid plaque rupture with unexpected thrombosis over a non-canonical vulnerable lesion. Atherosclerosis 218:356–362, 2011.

    Article  Google Scholar 

  30. Miller, J. D. Cardiovascular calcification: orbicular origins. Nat. Mater. 12:476–478, 2013.

    Google Scholar 

  31. Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672, 2003.

    Article  Google Scholar 

  32. Ohayon, J., G. Finet, A. M. Gharib, D. A. Herzka, P. Tracqui, J. Heroux, G. Rioufol, M. S. Kotys, A. Elagha, and R. I. Pettigrew. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 295:H717–H727, 2008.

    Google Scholar 

  33. Patel, D. J., J. S. Janicki, and T. E. Carew. Static anisotropic elastic properties of the aorta in living dogs. Circ. Res. 25:765–779, 1969.

    Article  Google Scholar 

  34. Perry, R., C. G. De Pasquale, D. P. Chew, L. Brown, P. E. Aylward, and M. X. Joseph. Changes in left anterior descending coronary artery wall thickness detected by high resolution transthoracic echocardiography. Am. J. Cardiol. 101:937–940, 2008.

    Article  Google Scholar 

  35. Polonsky, T. S., R. L. McClelland, N. W. Jorgensen, D. E. Bild, G. L. Burke, A. D. Guerci, and P. Greenland. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303:1610–1616, 2010.

    Article  Google Scholar 

  36. Richardson, P. D., M. J. Davies, and G. V. R. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941–944, 1989.

    Article  Google Scholar 

  37. Sfyroeras, G. S., A. Koutsiaris, C. Karathanos, A. Giannakopoulos, and A. D. Giannoukas. Clinical relevance and treatment of carotid stent fractures. J. Vasc. Surg. 51:1280–1285, 2010.

    Article  Google Scholar 

  38. Shaalan, W. E., H. Cheng, B. Gewertz, J. F. McKinsey, L. B. Schwartz, D. Katz, D. Cao, T. Desai, S. Glagov, and H. S. Bassiouny. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J. Vasc. Surg. 40:262–269, 2004.

    Article  Google Scholar 

  39. Speer, M. Y., and C. M. Giachelli. Regulation of cardiovascular calcification. Cardiovasc. Pathol. 13:63–70, 2004.

    Article  Google Scholar 

  40. Stary, H. C. Natural history of calcium deposits in atherosclerosis progression and regression. Z. Kardiol. 89:28–35, 2000.

    Article  Google Scholar 

  41. Stary, H. C., A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov, W. Insull, M. E. Rosenfeld, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis—a report from the committee on vascular-lesions of the council on atherosclerosis, American Heart Association. Circulation 92:1355–1374, 1995.

    Article  Google Scholar 

  42. Steinman, D. A., D. A. Vorp, and C. R. Ethier. Computational modeling of arterial biomechanics: insights into pathogenesis and treatment of vascular disease. J. Vasc. Surg. 37:1118–1128, 2003.

    Article  Google Scholar 

  43. Thilo, C., M. Gebregziabher, F. B. Mayer, P. L. Zwerner, P. Costello, and U. J. Schoef. Correlation of regional distribution and morphological pattern of calcification at CT coronary artery calcium scoring with non-calcified plaque formation and stenosis. Eur. Radiol. 20:855–861, 2010.

    Article  Google Scholar 

  44. Trott, D. W., and M. K. Gobbert. Conducting finite element convergence studies using COMSOL 4.0. Proceedings of the COMSOL Conference, Boston, MA, 2010.

  45. van Lammeren, G. W., B. L. Reichmann, F. L. Moll, M. L. Bots, D. P. de Kleijn, J. P. de Vries, G. Pasterkamp, and G. J. de Borst. Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting. Stroke 42:2550–2555, 2011.

    Article  Google Scholar 

  46. Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.

  47. Veress, A. I., D. G. Vince, P. M. Anderson, J. F. Cornhill, E. E. Herderick, J. D. Klingensmith, N. L. Kuban, and J. D. Thomas. Vascular mechanics of the coronary artery. Z Kardiol. 89:II/92–II/100, 2000.

  48. Virmani, R., A. P. Burke, A. Farb, and F. D. Kolodgie. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47:C13–C18, 2006.

    Article  Google Scholar 

  49. Virmani, R., F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20:1262–1275, 2000.

    Article  Google Scholar 

  50. Vito, R. P., and J. Hickey. The mechanical properties of soft tissues—II: the elastic response of arterial segments. J. Biomech. 13:951–957, 1980.

    Article  Google Scholar 

  51. Wahlgren, C. M., W. Zheng, W. Shaalan, J. Tang, and H. S. Bassiouny. Human carotid plaque calcification and vulnerability. Relationship between degree of plaque calcification, fibrous cap inflammatory gene expression and symptomatology. Cerebrovasc. Dis. 27:193–200, 2009.

  52. Wang, X. F., C. Z. Lu, X. Chen, X. D. Zhao, and D. S. Xia. A new method to quantify coronary calcification by intravascular ultrasound—the different patterns of calcification of acute myocardial infarction, unstable angina pectoris and stable angina pectoris. J. Invasive Cardiol. 20:587–590, 2008.

    Google Scholar 

  53. Williamson, S. D., Y. Lam, H. F. Younis, H. Huang, S. Patel, M. R. Kaazempur-Mofrad, and R. D. Kamm. On the sensitivity of wall stresses in diseased arteries to variable material properties. J. Biomech. Eng.—T. ASME 125:147–155, 2003.

  54. Wirtz, D. C., N. Schiffes, T. Pandorf, K. Radermacher, D. Weichert, and R. Forst. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 33:1325–1330, 2000.

    Article  Google Scholar 

  55. Wong, K. K. L., P. Thavornpattanapong, S. C. P. Cheung, Z. Sun, and J. Tu. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc. Disord. 2012. doi:10.1186/1471-2261-12-7.

    Google Scholar 

  56. Xu, X, H. Y. Ju, J. M. Cai, Y. Q. Cai, X. J. Wang, and Q. J. Wang. High-resolution MR study of the relationship between superficial calcification and the stability of carotid atherosclerotic plaque. Int. J. Cardiovasc. Imaging 26:143–150.

Download references

Acknowledgments

The Bucknell University Program for Undergraduate Research provided funding to Peter Rogerson for a pilot project of this study. We thank Katharine Frost for data entry, Professors James Baish and David Cipoletti, Bucknell University, for valuable discussion, and Dr. Jove Graham, Center for Health Research at Geisinger Medical Center, for valuable feedback on the manuscript.

Conflict of Interests

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript. The work described is computational; no human or animal studies were done in the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M. Ebenstein.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buffinton, C.M., Ebenstein, D.M. Effect of Calcification Modulus and Geometry on Stress in Models of Calcified Atherosclerotic Plaque. Cardiovasc Eng Tech 5, 244–260 (2014). https://doi.org/10.1007/s13239-014-0186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0186-6

Keywords

Navigation