Skip to main content
Log in

Guiding bone regeneration using hydrophobized silk fibroin nanofiber membranes

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Biocompatible barrier membranes with both hydrophobic and hydrophilic surface properties provide critical backup for guided regeneration at localized bone defects without soft tissue invasion. As a surface modified functional barrier, saturated fluorocarbon (CF4)-immobilized nanofibrous silk fibroin (SF) membranes were fabricated by electrospinning for a fibrous non-woven mat, water vapor treatment for insolubilization, and followed by CF4 gas plasma treatment for top surface hydrophobization. Plasma-treated SF nanofiber membranes maintained a non-woven mat structure without shrinkage and deformation in a five-month biodegradation test. From in vivo rabbit cranium perforation model, nanofibrous SF membranes prevented soft tissue invasion and facilitated volumetric bone regeneration compared with the control groups. New bone ingrowth in bone defects at 4 and 8 weeks after surgery was visualized by trichrome staining. Medical application of fluorocarbon-immobilized nanofibrous SF barrier membranes could be one of the practical approaches for guided bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Min, L. Jeong, K. Y. Lee, and W. H. Park, Macromol. Biosci., 6, 285 (2006).

    Article  CAS  Google Scholar 

  2. L. Jeong, K. Y. Lee, J. W. Liu, and W. H. Park, Int. J. Biol. Macromol., 38, 140 (2006).

    Article  CAS  Google Scholar 

  3. C. Zaharia, M. R. Tudora, P. O. Stanescu, E. Vasile, and C. Cincu, J. Optoelectron. Adv. Mater., 14, 163 (2012).

  4. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004).

    Article  CAS  Google Scholar 

  5. K. E. Park, S. Y. Jung, S. J. Lee, B. M. Min, and W. H. Park, Int. J. Biol. Macromol., 38, 165 (2006).

    Article  CAS  Google Scholar 

  6. J. P. Chen, S. H. Chen, and G. J. Lai, Nanoscale Res. Lett., 7, 1 (2012).

    Article  CAS  Google Scholar 

  7. K. Yamada, Y. Tsuboi, and A. Itaya, Thin Solid Films, 440, 208 (2003).

    Article  CAS  Google Scholar 

  8. E.-U. Lee, D.-J. Kim, H.-C. Lim, J.-S. Lee, U.-W. Jung, and S.-H. Choi, Biomater. Res., 19, 50 (2015).

    Google Scholar 

  9. J.-Y. Park, C. Yang, I.-H. Jung, H.-C. Lim, J.-S. Lee, U.-W. Jung, Y.-K. Seo, J.-K. Park, and S.-H. Choi, Biomater. Res., 19, 57 (2015).

    Google Scholar 

  10. C.-H. Chung, Y.-K. Kim, J.-S. Lee, U.-W. Jung, E.-K. Pang, and S.-H. Choi, Biomater. Res., 19, 164 (2015).

    Article  Google Scholar 

  11. J.-Y. Park, I.-H. Jung, Y.-K. Kim, H.-C. Lim, J.-S. Lee, U.-W. Jung, and S.-H. Choi, Biomater. Res., 19, 154 (2015).

    Google Scholar 

  12. K. Naresh, R. B. Ramesh, and B. Utpal, Mater. Lett., 63, 2466 (2009).

    Article  Google Scholar 

  13. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  CAS  Google Scholar 

  14. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Nano Lett., 3, 213 (2003).

    Article  CAS  Google Scholar 

  15. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999).

    Article  CAS  Google Scholar 

  16. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 1883 (2004).

    Article  CAS  Google Scholar 

  17. O. H. Kwon, I. S. Lee, Y.-G. Ko, W. Meng, K. H. Jung, I.-K. Kang, and Y. Ito, Biomed. Mater., 2, S52 (2007).

    Article  CAS  Google Scholar 

  18. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003).

    Article  CAS  Google Scholar 

  19. Y. Iriyama, T. Yasuda, D. L. Cho, and H. Yasuda, J. Appl. Polym. Sci., 39, 249 (1990).

    Article  CAS  Google Scholar 

  20. M. Shimosaki, N. Hayashi, S. Ihara, S. Satoh, and C. Yamabe, Vacuum, 73, 573 (2004).

    Article  CAS  Google Scholar 

  21. O. Kylián, M. Petr, A. Serov, P. Solar, O. Polonskyi, J. Hanuš, A. Choukourov, and H. Biederman, Vacuum, 100, 57 (2014).

    Article  Google Scholar 

  22. M. Lee, Y.-G. Ko, J. B. Lee, W. H. Park, D. Cho, and O. H. Kwon, Macromol. Res., 22, 746 (2014).

    Article  CAS  Google Scholar 

  23. P. P. Spicer, J. D. Kretlow, S. Young, J. A. Jansen, F. K. Kasper, and A. G. Mikos, Nat. Protoc., 7, 1918 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh Hyeong Kwon.

Additional information

The image from this article is used as the cover image of the Volume 24, Issue 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, YG., Lee, M., Park, W.H. et al. Guiding bone regeneration using hydrophobized silk fibroin nanofiber membranes. Macromol. Res. 24, 824–828 (2016). https://doi.org/10.1007/s13233-016-4109-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4109-2

Keywords

Navigation