Skip to main content
Log in

Steady-state relaxation kinetics observed on fluoropolymers modified by ambient air plasma treatment

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Fluoropolymers were treated by an ambient air plasma at 18.7 watt of RF power, 1.0 torr of vacuum pressure, and 0.5–2.0 min of exposure time. The surface wettability and composition were characterized by contact angle measurements and X-ray photoelectron spectroscopy, respectively. The plasma-modified fluorinated surfaces exhibited two different relaxation kinetics based on contact angle (θ A ) changes of water: i) an increase of cosθ A for fully fluorinated (perfluorinated) polymers with nonpolarity, ii) a decay of cosθ A for partially fluorinated polymers with polarity. A steady-state relaxation model was successfully applied to two different contact angle changes on the plasma-modified fluorinated surfaces. The initial polar fraction, f 0, was fitted as 0.03–0.2 for fully fluorinated polymers and 0.5–0.7 for partially fluorinated polymers, respectively. After the plasma treatment, the fully fluorinated polymers exhibited the relative increase of final polar fraction to initial one (i.e., f /f 0=1.2–2.4), but partially fluorinated polymers exhibited the relative decrease of final polar fraction to initial one (i.e., f /f 0=0.7–0.8). The continuous decrease of water contact angles on plasma-modified perfluorinated surfaces might be attributed to the further interactions of generated polar groups with atmospheric environment, while the increase of water contact angles on partially fluorinated surfaces are mainly attributed to the recovery of pristine surface by chain relaxation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lee, Transient Sorption and Permeation in Fluoropolymers, Ph.D. Dissertation, The Ohio State University, Columbus, 1995.

    Google Scholar 

  2. J. Scheirs, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, John Wiley & Sons Ltd., Baffins Lane, Chichester, 1997.

    Google Scholar 

  3. S. Lee and K. S. Knaebel, J. Appl. Polym. Sci., 64, 455 (1997).

    Article  CAS  Google Scholar 

  4. F. Garbassi, M. Morra, and E. Occhiello, Polymer Surfaces: From Physics to Technology, Wiley, Chichester, 1994.

    Google Scholar 

  5. T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara, and Y. Kimura, Biomedical Applications of Polymeric Materials, CRC, oca Raton, 1993.

    Google Scholar 

  6. A. J. Kinloch, Adhesion and Adhesives, Chapman and Hall, New York, 1987.

    Book  Google Scholar 

  7. G. Hougham, P. E. Cassidy, K. Johns, and T. Davidson, Fluoropolymers, Plenum, New York, 1999.

    Google Scholar 

  8. C. Jie-Rong and T. Wakida, J. Appl. Polym. Sci., 63, 1733 (1997).

    Article  CAS  Google Scholar 

  9. H. J. Griesser, G. Johnson, and J. G. Steele, Polym. Mater. Sci. Eng., 62, 828 (1990).

    CAS  Google Scholar 

  10. S. Lee, J. S. Park, and T. R. Lee, Langmuir, 24, 4817 (2008).

    Article  CAS  Google Scholar 

  11. T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht, and P. Dubruel, Biomacromolecules, 10, 2351 (2009).

    Article  CAS  Google Scholar 

  12. E. M. Liston, L. Martinu, and M. R. Wertheimer, J. Adhes. Sci. Technol., 7, 1091 (1993).

    Article  CAS  Google Scholar 

  13. N. Inagaki, Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Lancaster, 1996.

    Google Scholar 

  14. H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, Macromol. Res., 15, 238 (2007).

    Article  CAS  Google Scholar 

  15. G.-J. Han, J.-H. Kim, C.-K. Kim, S.-N. Chung, B.-H. Chun, and B.-H. Cho, Macromol. Res., 21, 1118 (2013).

    Article  CAS  Google Scholar 

  16. B. D. Ratner, Biosens. Bioelectron., 10, 797 (1995).

    Article  CAS  Google Scholar 

  17. R. Morent, N. D. Geyter, T. Desmet, and P. Dubruel, Plasma Process. Polym., 8, 171 (2011).

    Article  CAS  Google Scholar 

  18. A. S. Hoffman, Macromol. Symp., 101, 443 (1996).

    Article  CAS  Google Scholar 

  19. Y. Zhu and Z. Zhang, Macromol. Res., 22, 1275 (2014).

    Article  CAS  Google Scholar 

  20. J. D. Andrade, Surfaces and Interfacial Aspects of Biomedical Polymers, Plenum Press, New York, 1985.

    Book  Google Scholar 

  21. K. F. Mansfield and D. N. Theodorou, Macromolecules, 24, 6283 (1991).

    Article  CAS  Google Scholar 

  22. E. Ruckenstein and S. V. Gourisankar, J. Colloid Interface Sci., 107, 488 (1985).

    Article  CAS  Google Scholar 

  23. J. D. Andrade and W. Y. Chen, Surf. Interface Anal., 8, 253 (1986).

    Article  CAS  Google Scholar 

  24. J.-S. Chung, B. G. Kim, E.-H. Sohn, and J.-C. Lee, Macromolecules, 43, 10481 (2010).

    Article  CAS  Google Scholar 

  25. F. M. Garbassi and M. Occhiello, E., Polymer Surfaces: From Physics to Technology, Wiley, Chichester, 1994.

    Google Scholar 

  26. A. Baszkin and L. Ter-Minassian-Saraga, Polymer, 15, 759 (1974).

    Article  CAS  Google Scholar 

  27. H. Yasuda, A. K. Sharma, and T. Yasuda, J. Polym. Sci. Polym. Phys. Ed., 19, 1285 (1981).

    Article  CAS  Google Scholar 

  28. T. Yasuda, M. Miyama, and H. Yasuda, Langmuir, 8, 1425 (1992).

    Article  CAS  Google Scholar 

  29. X. Xie, T. R. Gengenbach, and H. J. Griesser, J. Adhes. Sci. Technol., 6, 1411 (1992).

    Article  CAS  Google Scholar 

  30. S. Lee, J. S. Park, and T. R. Lee, B. Korean Chem. Soc., 32, 41 (2011).

    Article  CAS  Google Scholar 

  31. S. Lee and K. S. Knaebel, J. Appl. Polym. Sci., 64, 455 (1997).

    Article  CAS  Google Scholar 

  32. S. Lee and K. S. Knaebel, J. Appl. Polym. Sci., 64, 477 (1997).

    Article  CAS  Google Scholar 

  33. S.-W. Lee, J.-S. Park, and T. R. Lee, B. Korean Chem. Soc., 32, 41 (2011).

    Article  CAS  Google Scholar 

  34. M. A. Golub, E. S. Lopata, and L.S. Finney, Langmuir, 10, 3629 (1994).

    Article  CAS  Google Scholar 

  35. M. E. Ryan and J. P. S. Badyal, Macromolecules, 28, 1377 (1995).

    Article  CAS  Google Scholar 

  36. F. Tüdos and M. Iring, Acta Polym., 39, 19 (1988).

    Article  Google Scholar 

  37. T. R. Gengenbach, X. Xie, R. C. Chatelier, and H. J. Griesser, in Plasma Surface Modification of Polymers: Relevance to Adhesion, M. Strobel, C. S. Lyons, and K. L. Mittal, Eds., VSP, Utrecht, The Netherlands, 1994.

  38. E. H. Lock, D. Y. Petrovykh, P. Mack, T. Carney, R. G. White, S. G. Walton, and R. F. Fernsler, Langmuir, 26, 8857 (2010).

    Article  CAS  Google Scholar 

  39. J. Hyun, Polymer, 42, 6473 (2001).

    Article  CAS  Google Scholar 

  40. I. Banik, K. S. Kim, Y. I. Yun, D. H. Kim, C. M. Ryu, C. S. Park, G. S. Sur, and C. E. Park, Polymer, 44, 1163 (2003).

    Article  CAS  Google Scholar 

  41. D. J. Wilson, R. L. Williams, and R. C. Pond, Surf. Interface Anal., 31, 385 (2001).

    Article  CAS  Google Scholar 

  42. X. Xie, T. R. Genenbach, and H. J. Griesser, in Contact Angle, Wettability and Adhesion: Festschrift in Honor of Professor Robert J. Good, VSP International Science Publishers, Amsterdam, 1993.

    Google Scholar 

  43. D. J. Wilson, R. L. Williams, and R. C. Pond, Surf. Interface Anal., 31, 397 (2001).

    Article  CAS  Google Scholar 

  44. Y. J. Hwang, in Fiber and Polymer Science, North Carolina State University, Raleigh, 2003.

    Google Scholar 

  45. R. E. Johnson and R. H. Dettre, J. Phys. Chem., 68, 1744 (1964).

    Article  CAS  Google Scholar 

  46. C. W. Extrand, Langmuir, 19, 3793 (2003).

    Article  CAS  Google Scholar 

  47. F. J. Holly and M. F. Refojo, J. Biomed. Mater. Res., 9, 315 (1975).

    Article  CAS  Google Scholar 

  48. D. S. Everhart and C. N. Reilley, Surf. Interface Anal., 3, 126 (1981).

    Article  CAS  Google Scholar 

  49. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944).

    Article  CAS  Google Scholar 

  50. J. N. Israelachvili and M. L. Gee, Langmuir, 5, 288 (1989).

    Article  CAS  Google Scholar 

  51. H. J. Griesser, Y. Da, A. E. Hughes, T. R. Gengenbach, and A. W. H. Mau, Langmuir, 7, 2484 (1991).

    Article  CAS  Google Scholar 

  52. R. C. Chatelier, X. Xie, T. R. Gengenbach, and H. J. Griesser, Langmuir, 11, 2576 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wha Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SW. Steady-state relaxation kinetics observed on fluoropolymers modified by ambient air plasma treatment. Macromol. Res. 23, 325–332 (2015). https://doi.org/10.1007/s13233-015-3044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3044-y

Keywords

Navigation