Skip to main content
Log in

The effect of H2O2/Fe2+ catalytic oxidation system on the morphology, structure and properties of flake-like poly(2,3-dimethylaniline)

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this work, flake-like poly(2,3-dimethylaniline) (P(2,3-DMA)) with enhanced thermal stability and anticorrosive ability was synthesized by in situ polymerization using H2O2/Fe2+ catalytic oxidation system, comparing with traditional oxidant ammonium persulfate (APS) synthetic method. The structure and morphology of the samples were characterized Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The experimental results demonstrated that using H2O2/Fe2+ catalytic oxidation system was more inclined to form the two-dimensional P(2,3-DMA) flakes. The enhancement in thermostability and corrosion resistance was attributed to the formation of phenazine-like structures in the polymer chains, which could serve as templates to form the flake-like morphology. In addition, using H2O2/Fe2+ catalytic oxidation system is more environmental friendly than the APS method that can avoid ammonium pollution on aquatic life as well as waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wan, Macromol. Rapid Commun., 30, 963 (2009).

    Article  CAS  Google Scholar 

  2. Y. Hao, B. Zhou, F. Wang, J. Li, L. Deng, and Y. N. Liu, Biosens. Bioelectron., 52, 422 (2014).

    Article  CAS  Google Scholar 

  3. S. Banerjee, D. Konwar, and A. Kumar, Sens. Actuators B: Chem., 190, 199 (2014).

    Article  CAS  Google Scholar 

  4. C. V. Tuan, M. A. Tuan, N. V. Hieu, and T. Trung, Curr. Appl. Phys., 12, 1011 (2012).

    Article  Google Scholar 

  5. H. Wang, E. Zhu, J. Yang, P. Zhou, D. Sun, and W. Tang, J. Phys. Chem. C, 116, 13013 (2012).

    Article  CAS  Google Scholar 

  6. M. Oyharcabal, T. Olinga, M.P. Foulc, S. Lacomme, E. Gontier, and V. Vigneras, Compos. Sci. Technol., 74, 107 (2013).

    Article  CAS  Google Scholar 

  7. J. M. Yeh, S. J. Liou, C. Y. Lai, and P. C. Wu, Chem. Mater., 13, 1131 (2001).

    Article  CAS  Google Scholar 

  8. L. Ma, D. Fu, M. Gan, F. Zhang, Z. Li, and S. Li, J. Appl. Polym. Sci., 130, 4528 (2013).

    CAS  Google Scholar 

  9. N. Jadhav, C. A. Vetter, and V. J. Gelling, Electrochim. Acta, 102, 28 (2013).

    Article  CAS  Google Scholar 

  10. A. Kalendová, Prog. Org. Coat., 46, 324 (2003).

    Article  Google Scholar 

  11. M. Siljeg, L. Foglar, and M. Kukucka, J. Hazard. Mater., 178, 572 (2010).

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Jing, and J. Kong, Synth. Met., 157, 269 (2007).

    Article  CAS  Google Scholar 

  13. H. Zhang, J. Wang, Z. Wang, F. Zhang, and S. Wang, Macromol. Rapid Commun., 30, 1577 (2009).

    Article  Google Scholar 

  14. S. Zhu, X. Chen, Y. Gou, Z. Zhou, M. Jiang, J. Lu, and D. Hui, Polym. Adv. Technol., 23, 796 (2012).

    Article  CAS  Google Scholar 

  15. C. Laslau, Z. Zujovic, and J. Travas-Sejdic, Prog. Polym. Sci., 35, 1403 (2010).

    Article  CAS  Google Scholar 

  16. L. Ma, C. H. Huang, and M. Gan, J. Appl. Polym. Sci., 127, 3699 (2013).

    Article  CAS  Google Scholar 

  17. Y. C. Chung, J. S. Park, C. H. Shin, J. W. Choi, and B. C. Chun, Macromol. Res., 20, 66 (2012).

    Article  CAS  Google Scholar 

  18. E. Kim, S. Kim, and C. Lee, Macromol. Res., 18, 215 (2010).

    Article  CAS  Google Scholar 

  19. S. Baek, J. J. Ree, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 40, 983 (2002).

    Article  CAS  Google Scholar 

  20. G. Li, C. Zhang, Y. Li, H. Peng, and K. Chen, Polymer, 51, 1934 (2010).

    Article  CAS  Google Scholar 

  21. H. D. Tran, I. Norris, J. M. D’Arcy, H. Tsang, Y. Wang, B. R. Mattes, and R. B. Kaner, Macromolecules, 41, 7405 (2008).

    Article  CAS  Google Scholar 

  22. X. G. Li, W. Duan, M. R. Huang, and Y. L. Yang, J. Polym. Sci. Part A: Polym. Chem., 39, 3989 (2001).

    Article  CAS  Google Scholar 

  23. Q. Tang, X. Sun, Q. Li, J. Wu, J. Lin, and M. Huang, Mater. Lett., 63, 540 (2009).

    Article  CAS  Google Scholar 

  24. G. Song, J. Han, J. Bo, and R. Guo, J. Mater. Sci., 44, 715 (2008).

    Article  Google Scholar 

  25. J. Stejskal, I. Sapurina, and M. Trchová, Prog. Polym. Sci., 35, 1420 (2010).

    Article  CAS  Google Scholar 

  26. H. Wang and Y. Lu, Synth. Met., 162, 1369 (2012).

    Article  CAS  Google Scholar 

  27. M. Trchová, I. Šeděnková, E. N. Konyushenko, J. Stejskal, P. Holler, and G. Ćirić-Marjanović, J. Phys. Chem. B, 110, 9461 (2006).

    Article  Google Scholar 

  28. J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, and P. Holler, Polymer, 47, 8253 (2006 ).

    Article  CAS  Google Scholar 

  29. J. E. P. da Silva, D. L. A. de Faria, S. I. C. de Torresi, and M. L. A. Temperini, Macromolecules, 33, 3077 (2000).

    Article  Google Scholar 

  30. W. Lu, R. L. Elsenbaumer, and B. Wessling, Synth. Met., 71, 2163 (1995).

    Article  CAS  Google Scholar 

  31. B. Wessling, Synth. Met., 85, 1313 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Ma, L., Gan, M. et al. The effect of H2O2/Fe2+ catalytic oxidation system on the morphology, structure and properties of flake-like poly(2,3-dimethylaniline). Macromol. Res. 22, 853–858 (2014). https://doi.org/10.1007/s13233-014-2111-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2111-0

Keywords

Navigation