Skip to main content
Log in

Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Alphaproteobacteria of the genus Wolbachia are common intracellular endosymbionts of a variety of insects. Their successful spread over a vast range of host taxa is often attributed to selective advantages conferred by the bacteria to infected individuals. Among the known diversity of Wolbachia pipientis infecting Drosophila melanogaster, a single genotype, wMel, within the wMel strain has been found to dominate over other genotypes world-wide. Genotyping of D. melanogaster wild populations from Ukraine reveals a relatively high frequency of the wMel genotype, although 31 % flies from an Uman’ population are infected with the rare genotype wMelCS. We demonstrate that wMelCS-infected females have lower fecundity compared to wMel-infected flies, which might be the cause of wMel prevalence in D. melanogaster populations. We report no difference in the bacterial transmission rate between these two bacterial genotypes. However, we observed an association between transmission fidelity of Wolbachia and genotype of D. melanogaster indicating that Wolbachia-host relationships in this case are more complex. Furthermore our study reveals fluctuations in Wolbachia infection rates in wMel-infected populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ballard JWO (2004) Sequential evolution of a symbiont inferred from the host: Wolbachia and Drosophila simulans. Mol Biol Evol 21(3):428–442

    Article  CAS  PubMed  Google Scholar 

  • Belousov AO, Kozeretskaia IA (2011) Symbiotic bacteria, which modify reproduction processes of Drosophila melanogaster. Mikrobiol Z 73(2):43–52

    CAS  PubMed  Google Scholar 

  • Dobson SL, Fox CW, Jiggins FM (2002) The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc Biol Sci 269:437–445. doi:10.1098/rspb.2001.1876

    Article  PubMed Central  PubMed  Google Scholar 

  • Duron O, Labbe P, Berticat C, Rousset F, Guillot S et al (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60:303–314

    Article  CAS  PubMed  Google Scholar 

  • Duron O, Bouchon D, Boutin S et al (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27. doi:10.1186/1741-7007-6-27

    Article  PubMed Central  PubMed  Google Scholar 

  • Dyer KA, Jaenike J (2004) Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168(3):1443–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Early AM, Clark AG (2013) Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations. Mol Ecol 22(23):5765–5778

  • Fry AJ, Rand DM (2002) Wolbachia interactions that determine Drosophila melanogaster survival. Evolution 56:1976–1981

    Article  PubMed  Google Scholar 

  • Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93:379–389

    Article  CAS  PubMed  Google Scholar 

  • Harcombe W, Hoffmann AA (2004) Wolbachia effects in Drosophila melanogaster: in search of fitness benefits. J Invertebr Pathol 87:45–50

    Article  CAS  PubMed  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection ininsects. Science 322:702

    Article  CAS  PubMed  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann AA, Clancy DJ, Merton E (1994) Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics 136:993–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann AA, Hercus M, Dagher H (1998) Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148:221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurst GD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population inherited symbionts phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond Ser B 272:1525–1534

    Article  CAS  Google Scholar 

  • Hurst GDD, Johnson AP, Schulenburg JHG, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature sensitive trait with a threshold bacterial density. Genetics 156:699–709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ilinsky Y (2013) Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS ONE 8:e54373. doi:10.1371/journal.pone.0054373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ilinsky YY, Zakharov IK (2007) The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster. Russ J Genet 43(7):748–756

    Article  CAS  Google Scholar 

  • Nunes M, Nolte V, Schlötterer C (2008) Non-random Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes. Mol Biol Evol 25(11):2493–2498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AME et al (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford

    Google Scholar 

  • Poinsot D, Mercot H (1997) Wolbachia infection in Drosophila simulans: does the female host bear a physiological cost? Evolution 51:180–186. doi:10.2307/2410971

    Article  Google Scholar 

  • Reynolds KT, Hoffmann AA (2002) Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet Res 80(2):79–87

    Article  PubMed  Google Scholar 

  • Richardson MF, Weinert LA, Welch JJ, Linheiro RS, Magwire MM et al (2012) Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet 8(12):e1003129

    Article  PubMed Central  PubMed  Google Scholar 

  • Riegler M, Sidhu M, Miller WJ, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433

    Article  CAS  PubMed  Google Scholar 

  • Serga SV, Kozeretskaya IA (2014) The puzzle of Wolbachia spreading out through natural populations of Drosophila melanogaster. Biol Bull Rev 4(1):15–24

    Article  Google Scholar 

  • Solignac M, Vautrin D, Rousset F (1994) Widespread occurrence of the proteobacteria Wolbachia and partial cytoplasmic incompatibility in Drosophila melanogaster. C R Acad Sci 317:461–470

    Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e2

    Article  PubMed  Google Scholar 

  • Turelli M, Hoffmann AA (1995) Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140:1319–1338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Unckless RL, Jaenike J (2011) Maintenance of a male-killing Wolbachia in Drosophila innubila by male-killing dependent and male-killing independent mechanisms. Evolution 66:678–689

    Article  PubMed  Google Scholar 

  • Verspoor RL, Haddrill PR (2011) Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS ONE 6(10):e26318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nature reviews. Microbiol 6:741–751

    CAS  Google Scholar 

  • Yamada R, Floate KD, Riegler M, O’Neill SL (2007) Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics 177:801–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B Biol Sci 265:509–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr G. Milinevsky, the staff of Biology Department of Mechnikov National University of Odesa, and the staff of the National Institute of Viniculture and Wine Industry UAAS for their valuable help in material collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Maistrenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serga, S., Maistrenko, O., Rozhok, A. et al. Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster . Symbiosis 63, 11–17 (2014). https://doi.org/10.1007/s13199-014-0283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0283-1

Keywords

Navigation