Skip to main content
Log in

How endo- is endo-? Surface sterilization of delicate samples: a Bryopsis (Bryopsidales, Chlorophyta) case study

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In the search for endosymbiotic bacteria, elimination of ectosymbionts is a key point of attention. Commonly, the surface of the host itself or the symbiotic structures are sterilized with aggressive substances such as chlorine or mercury derivatives. Although these disinfectants are adequate to treat many species, they are not suitable for surface sterilization of delicate samples. In order to study the bacterial endosymbionts in the marine green alga Bryopsis, the host plant’s cell wall was mechanically, chemically and enzymatically cleaned. Merely a chemical and enzymatic approach proved to be highly effective. Bryopsis thalli treated with cetyltrimethylammonium bromide (CTAB) lysis buffer, proteinase K and bactericidal cleanser Umonium Master showed no bacterial growth on agar plates or bacterial fluorescence when stained with a DNA fluorochrome. Moreover, the algal cells were intact after sterilization, suggesting endophytic DNA is still present within these algae. This new surface sterilization procedure opens the way to explore endosymbiotic microbial communities of other, even difficult to handle, samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Andersen RA (2005) Algal culturing techniques. Academic, New York

    Google Scholar 

  • Ashen JB, Goff LJ (2000) Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. Appl Environ Microbiol 66:3024–3030

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Kaever MJ (1992) Dasycladales: an illustrated monograph of a fascinating algal order. Thieme, Stuttgart

    Google Scholar 

  • Burke C, Kjelleberg S, Thomas T (2009) Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl Environ Microbiol 75:252–256

    Article  CAS  PubMed  Google Scholar 

  • Burr FA, West JA (1970) Light and electron microscope observations on the vegetative and reproductive structures of Bryopsis hypnoides. Phycologia 9:17–37

    Google Scholar 

  • Chisholm JRM, Dauga C, Ageron E, Grimont PAD, Jaubert JM (1996) ‘Roots’ in mixotrophic algae. Nature 381:382

    Article  CAS  Google Scholar 

  • Connell TD (1981) A new technique for surface sterilization of insect eggs. J Kansas Entomol Soc 54:124–128

    Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 483:90–93

    Article  Google Scholar 

  • Dawes CJ, Lohr CA (1978) Cytoplasmic organization and endosymbiotic bacteria in the growing points of Caulerpa prolifera. Rev Algol 13:309–314

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Droop MR (1967) A procedure for routine purification of algal cultures with antibiotics. Br Phycol Bull 3:295–297

    Article  Google Scholar 

  • Fisher MM, Wilcox LW, Graham LE (1998) Molecular characterization of epiphytic bacterial communities on Charophycean green algae. Appl Environ Microbiol 64:4384–4389

    CAS  PubMed  Google Scholar 

  • Fries L, Iwasaki H (1976) p-hydroxyphenylacetic acid and other phenolic compounds as growth stimulators of the red alga Porphyra tenera. Plant Sci Lett 6:299–307

    Article  CAS  Google Scholar 

  • Head WD, Carpenter EJ (1975) Nitrogen fixation associated with the marine macroalga Codium fragile. Limnol Oceanogr 20:815–823

    Article  CAS  Google Scholar 

  • Kan Y, Fujita T, Sakamoto B, Hokama Y, Nagai H, Kahalalide K (1999) A new cyclic depsipeptide from the Hawaiian green alga Bryopsis species. J Nat Prod 62:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Klotchkova TA, Kang Y (2001) Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumosa. J Cell Sci 114:2009–2014

    CAS  PubMed  Google Scholar 

  • Kooistra W, Boelebos SA, Stam WT (1991) A method for obtaining axenic algal cultures using the antibiotic cefotaxime with emphasis on Cladophoropsis membranacea (Chlorophyta). J Phycol 27:656–658

    Article  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Marshall K, Joint I, Callow ME, Callow JA (2006) Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microb Ecol 52:302–310

    Article  PubMed  Google Scholar 

  • Meyer JM, Hoy MA (2008) Removal of fungal contaminants and their DNA from the surface of Diaphorina citri (Hemiptera: Psyllidae) prior to a molecular survey of endosymbionts. Fla Entomol 91:702–705

    Article  Google Scholar 

  • Mine I, Menzel D, Okuda K (2008) Morphogenesis in giant-celled algae. Int Rev Cell Mol Biol 266:37–83

    Article  CAS  PubMed  Google Scholar 

  • Provasoli L, Pintner IJ (1980) Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J Phycol 16:196–201

    Article  Google Scholar 

  • Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77

    Article  CAS  PubMed  Google Scholar 

  • Tatewaki M, Provasoli L, Pintner IJ (1983) Morphogenesis of Monostroma oxyspermum (Kütz.) Doty (Chlorophyceae) in axenic culture, especially in bialgal culture. J Phycol 19:409–416

    Article  Google Scholar 

  • Temmerman R, Scheirlinck I, Huys G, Swings J (2003) Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:220–226

    Article  CAS  PubMed  Google Scholar 

  • Turner JB, Friedmann EI (1974) Fine structure of capitular filaments in the coenocytic green alga Penicillus. J Phycol 10:125–134

    Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge, pp 419–428

    Google Scholar 

  • Weinberger F, Beltran J, Correa JA, Lion U, Pohnert G, Kumar N, Steinberg P, Kloareg B, Potin P (2007) Spore release in Acrochaetium sp. (Rhodophyta) is bacterially controlled. J Phycol 43:235–241

    Article  Google Scholar 

  • West JA, McBride DL (1999) Long-term and diurnal carpospore discharge patterns in the Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta). Hydrobiologia 398(399):101–113

    Article  Google Scholar 

  • Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by ‘Fonds Wetenschappelijk Onderzoek’ FWO-Flanders project G.0045.08. We sincerely thank Valya Vassileva and Tom Beeckman for confocal microscopy assistance. We acknowledge John West for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joke Hollants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollants, J., Leliaert, F., De Clerck, O. et al. How endo- is endo-? Surface sterilization of delicate samples: a Bryopsis (Bryopsidales, Chlorophyta) case study. Symbiosis 51, 131–138 (2010). https://doi.org/10.1007/s13199-010-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0068-0

Keywords

Navigation