Skip to main content
Log in

Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adawiyah DR, Sasaki T, Kohyama K (2013) Characterization of arenga starch in comparison with sago starch. Carbohydr Polym 92(2):2306–2313

    Article  CAS  Google Scholar 

  • Aguirre A, Borneo R, León AE (2013) Properties of triticale protein films and their relation to plasticizing–antiplasticizing effects of glycerol and sorbitol. Ind Crop Prod 50:297–303

    Article  CAS  Google Scholar 

  • Ahmadi R, Kalbasi-Ashtari A, Oromiehie A, Yarmand MS, Jahandideh F (2012) Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J Food Eng 109(4):745–751

    Article  CAS  Google Scholar 

  • Arvanitoyannis I, Biliaderis CG (1999) Physical properties of polyol/starch edible blends made of methyl cellulose and soluble starch. Carbohydr Polym 38:47–58

    Article  CAS  Google Scholar 

  • BeMiller JN, Whistler RL (2009) Starch: chemistry and technology. Academic Press

  • Bergo PVA, Carvalho RA, Sobral PJA, Dos Santos RMC, Da Silva FBR, Prison JM, Habitante A (2008) Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packag Technol Sci 21(2):85–89

    Article  CAS  Google Scholar 

  • Bodirlau R, Teaca C-A, Spiridon I (2013) Influence of natural fillers on the properties of starch-based biocomposite films. Compos Part B 44(1):575–583

    Article  CAS  Google Scholar 

  • Cerqueira MA, Souza BWS, Teixeira JA, Vicente AA (2012) Effect of glycerol and corn oil on physicochemical properties of polysaccharide films—A comparative study. Food Hydrocoll 27(1):175–184

    Article  CAS  Google Scholar 

  • Chiumarelli M, Hubinger MD (2014) Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocoll 38:20–27

    Article  CAS  Google Scholar 

  • Cuq B, Gontard N, Aymard C, Guilbert S (1997) Relative humidity and temperature effects on mechanical and water vapor barrier properties of myofibrillar protein-based films. Polym Gels Networks 5(1):1–15

    Article  CAS  Google Scholar 

  • Dai H, Yu J, Geng F, Ma X (2009) Preparation and properties of starch-based film using N-(2-hydroxyethyl) formamide as a new plasticizer. Polym-Plast Technol Eng 48(8):866–870

    Article  CAS  Google Scholar 

  • Elberson W, Oyen L (2010) Sugar palm (Arenga pinnata)

  • Famá L, Rojas AM, Goyanes S, Gerschenson L (2005) Mechanical properties of tapioca-starch edible films containing sorbates. LWT-Food Sci Technol 38(6):631–639

    Article  CAS  Google Scholar 

  • Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20(8):316–332

    Article  CAS  Google Scholar 

  • García NL, Famá L, Dufresne A, Aranguren M, Goyanes S (2009) A comparison between the physico-chemical properties of tuber and cereal starches. Food Res Int 42(8):976–982

    Article  CAS  Google Scholar 

  • Ghasemlou M, Khodaiyan F, Oromiehie A (2011) Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr Polym 84(1):477–483

    Article  CAS  Google Scholar 

  • González A, Alvarez Igarzabal CI (2013) Soy protein–Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocoll 33(2):289–296

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll 45:211–217

    Article  CAS  Google Scholar 

  • Hernández-Munoz P, Kanavouras A, Perry KWN, Gavara R (2003) Development and characterization of biodegradable films made from wheat gluten protein fractions. J Agric Food Chem 51:7647–7654

    Article  CAS  Google Scholar 

  • Hu G, Chen J, Gao J (2009) Preparation and characteristics of oxidized potato starch films. Carbohydr Polym 76(2):291–298

    Article  CAS  Google Scholar 

  • Imran M, El-Fahmy S, Revol-Junelles AM, Desobry S (2010) Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr Polym 81(2):219–225

    Article  CAS  Google Scholar 

  • Imre B, Pukánszky B (2015) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49(6):1215–1233

    Article  CAS  Google Scholar 

  • Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK, Siregar JP (2013) Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydr Polym 91(2):699–710

    Article  CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5(6):2058–2076

    Article  CAS  Google Scholar 

  • Jouki M, Khazaei N, Ghasemlou M, HadiNezhad M (2013) Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr Polym 96(1):39–46

    Article  CAS  Google Scholar 

  • Kristo E, Biliaderis CG (2006) Water sorption and thermomechanical properties of water/sorbitol-plasticized composite biopolymer films: caseinate-pullulan bilayers and blends. Food Hydrocoll 20(7):1057–1071

    Article  CAS  Google Scholar 

  • Kurt A, Kahyaoglu T (2014) Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydr Polym 104:50–8

    Article  CAS  Google Scholar 

  • Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57(1):106–115

    Article  CAS  Google Scholar 

  • Ma X, Yu J (2004) The plastcizers containing amide groups for thermoplastic starch. Carbohydr Polym 57(2):197–203

    Article  CAS  Google Scholar 

  • Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–47

    Article  CAS  Google Scholar 

  • Müller CMO, Yamashita F, Laurindo JB (2008) Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr Polym 72(1):82–87

    Article  CAS  Google Scholar 

  • Osés J, Fernández-Pan I, Mendoza M, Maté J (2009) Stability of the mechani-cal properties of edible films based on whey protein isolate during storage atdifferent relative humidity. Food Hydrocoll 23:125–131

    Article  CAS  Google Scholar 

  • Park JW, Im SS, Kim SH, Kim Y (2000) Biodegradable polymer blends of poly(L lactic acid) and gelatinized starch. Polym Eng Sci 40:2539–2550

    Article  CAS  Google Scholar 

  • Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141

    Article  CAS  Google Scholar 

  • Perez E, Segovia X, Tapia MS, Schroeder M (2012) Native and cross-linked modified Dioscorea trifida (cush-cush yam) starches as bio-matrices for edible films. J Cell Plast 48(6):545–556

    Article  CAS  Google Scholar 

  • Perez‐gago MB, Krochta JM (2001) Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. J Food Sci 66(5):705–710

    Article  Google Scholar 

  • Razavi SMA, Mohammad Amini A, Zahedi Y (2015) Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocoll 43:290–298

    Article  CAS  Google Scholar 

  • Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA (2011) Comparative study of physical properties based on different parts of sugar palm fibre reinforced unsaturated polyester composites. Key Eng Mater 471:455–460

    Article  CAS  Google Scholar 

  • Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012a). A new approach to use arenga pinnata as sustainable biopolymer : effects of plasticizers on physical properties, 4, 254–259

  • Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012b) Sugar palm tree: a versatile plant and novel source for biofibres, biomatrices, and biocomposites. Polym Renewable Resour 3(2):61–77

    CAS  Google Scholar 

  • Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2013) Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydr Polym 92(2):1711–1716

    Article  CAS  Google Scholar 

  • Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2014) Physico-chemical and thermal properties of starch derived from sugar palm tree (Arenga pinnata). Asian J Chem 26(4):955–959

    CAS  Google Scholar 

  • Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CMO (2013) Development of biodegradable flexible films of starch and poly (lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92(1):19–22

    Article  CAS  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  • Suppakul P, Chalernsook B, Ratisuthawat B, Prapasitthi S, Munchukangwan N (2013) Empirical modeling of moisture sorption characteristics and mechanical and barrier properties of cassava flour film and their relation to plasticizing–antiplasticizing effects. LWT-Food Sci Technol 50(1):290–297

    Article  CAS  Google Scholar 

  • Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67(3):288–295

    Article  CAS  Google Scholar 

  • Talja RA, Helén H, Roos YH, Jouppila K (2008) Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydr Polym 71(2):269–276

    Article  CAS  Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14(3):71–78

    Article  CAS  Google Scholar 

  • Ticoalu A, Aravinthan T, Cardona F (2012) A review on the characteristics of gomuti fibre and its composites with thermoset resins. J Reinf Plast Compos 0731684412463109

  • Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2012) Mechanical and physical properties of cassava starch-gelatin composite films. Int J Polym Mater 61(10):778–792

    Article  CAS  Google Scholar 

  • Yin SW, Tang CH, Wen QB, Yang XQ (2007) Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study. J Agric Food Chem 55(18):7399–7404

    Article  CAS  Google Scholar 

  • Zhang Y, Han JH (2006) Plasticization of pea starch films with monosaccharides and polyols. J Food Sci 71(6):E253–E261

    Article  CAS  Google Scholar 

  • Zhang Y, Rempel C (2012) Retrogradation and antiplasticization of thermoplastic starch. Thermoplastic Elastomers 118–119

  • Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics-a review. Crit Rev Food Sci Nutr 54(10):1353–70

    Article  CAS  Google Scholar 

  • Zhong Y, Li Y (2014) Effects of glycerol and storage relative humidity on the properties of kudzu starch-based edible films. Starch–Stärke 66(5–6):524–532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Ministry of Education Malaysia for the Commonwealth Scholarship and Fellowship Plan awarded to the first author and for funding this project through Exploratory Research Grant Scheme (ERGS), ERGS/1-2013/5527190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanyang, M.L., Sapuan, S.M., Jawaid, M. et al. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging. J Food Sci Technol 53, 326–336 (2016). https://doi.org/10.1007/s13197-015-2009-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-2009-7

Keywords

Navigation