Skip to main content
Log in

Interpolation of generalized Morrey spaces

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper, we shall establish a theory of interpolation of generalized Morrey spaces. We use the complex interpolation methods. Our results extend the interpolation results for Morrey spaces which are discussed by Lu et al. (Can Math Bull 57:598–608, 2014), and also Lemarié-Rieusset (2014). We establish the interpolation of generalized weak Morrey spaces, generalized Orlicz–Morrey spaces and generalized weak Orlicz–Morrey spaces. We also consider the closure of the functions which are essentially bounded and have compact support. The second interpolation of such spaces will yield a class of closed spaces; we describe the second interpolation of the closure of the functions which are essentially bounded and have compact support. This result will carry over to generalized Morrey spaces, generalized weak Morrey spaces, generalized Orlicz–Morrey spaces and generalized weak Orlicz–Morrey spaces. We also give several examples that explain the subtlety of proving the interpolation of Morrey spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C., Sharpley, R.C.: Interpolation of Operators, vol. 129. Academic press, New York (1988)

    MATH  Google Scholar 

  2. Bergh, J.: Relation between the 2 complex methods of interpolation. Indiana Univ. Math. J. 28(5), 775–778 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. In: Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

  4. Blasco, O., Ruiz, A., Vega, L.: Non-interpolation in Morrey–Campanato and block spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 31–40 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Burenkov, V.I., Nursultanov, E.D.: Description of interpolation spaces for local Morrey-type spaces. Tr. Mat. Inst. Steklova Teoriya Funktsii i Differentsialnye Uravneniya 269, 52–62 (2010). (Russian) [Translation in Proc. Steklov Inst. Math. 269 (2010)]

  6. Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 14(1), 113–190, 46–56 (1964)

  7. Cobos, F., Peetre, J., Persson, L.E.: On the connection between real and complex interpolation of quasi-Banach spaces. Bull. Sci. Math. 122, 17–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cwikel, M.: Lecture notes on duality and interpolation spaces. arXiv:0803.3558v2

  9. Evans, C., Gariepy, F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  10. Gala, S., Sawano, Y., Tanaka, H.: A remark on two generalized Orlicz–Morrey spaces. J. Approx. Theory 198, 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grafakos, L.: Classical Fourier analysis. In: Graduate Texts in Mathematics, vol. 250. Springer, New York (2009)

  12. Iaffei, B.: Comparison of two weak versions of the Orlicz spaces. Rev. Un. Mat. Argent. 40(1), 191–202 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Jawerth, B., Torchinsky, A.: Local sharp maximal functions. J. Approx. Theory 43(3), 231–270 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. PDE 19, 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lemarié-Rieusset, P.G.: Multipliers and Morrey spaces. Potential Anal. 38(3), 741–752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lemarié-Rieusset, P. G.: Erratum to: multipliers and Morrey spaces. Potential Anal. 41, 1359–1362 (2014)

  17. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Diss. Math. (Rozpr. Mat.) 489, 114 (2013)

  18. Lu, Y., Yang, D., Yuan, W.: Interpolation of Morrey spaces on metric measure spaces. Can. Math. Bull. 57, 598–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazzucato, A.L.: Decomposition of Besov–Morrey spaces. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001). In: Contemp. Math., vol. 320, pp. 279–294. Am. Math. Soc., Providence (2003)

  20. Mazzucato, A.L.: Besov–Morrey spaces : function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nakai, E.: A characterization of pointwise multipliers on the Morrey spaces, Sci. Math. 3, 445–454 (2000)

  22. Nakai, E.: Generalized Fractional Integrals on Orlicz–Morrey Spaces, Banach and Function Spaces, pp. 323–333. Yokohama Publ, Yokohama (2004)

  23. Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Stud. Math. 188(3), 193–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakai, E., Sobukawa, T.: \(B_u^w\)-function spaces and their interpolation. Tokyo Math. J. (to appear)

  25. Nilsson, P.: Interpolation of Banach lattices. Stud. Math. 82(2), 135–154 (1985)

    MathSciNet  MATH  Google Scholar 

  26. Nakamura, S., Noi, T., Sawano, Y.: Generalized Morrey spaces and trace operator. Sci. China Math. 59(2), 281–336 (2016)

    Article  MathSciNet  Google Scholar 

  27. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. M. Dekker, New York (1991)

    MATH  Google Scholar 

  28. Ruiz, A., Vega, L.: Corrigenda to unique continuation for Schrödinger operators with potential in Morrey spaces and a remark on interpolation of Morrey spaces. Publ. Mat. 39, 405–411 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257(4), 871–905 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr. 282(12), 1788–1810 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36, 517–556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sawano, Y., Hakim, D.I., Gunawan, H.: Non-smooth atomic decomposition for generalized Orlicz–Morrey spaces. Math. Nachr. 288(14–15), 1741–1775 (2015)

  34. Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations, Tracts in Mathematics, vol. 24. European Mathematical Society, Zurich (2015)

  36. Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including \(Q\) spaces. Math. Z. 265, 451–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, D., Yuan, W.: Dual properties of Triebel–Lizorkin-type spaces and their applications. Z. Anal. Anwend. 30, 29–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singap.) 11(5), 1350021 (2013). (p. 45)

  40. Yuan, W.: Complex interpolation for predual spaces of Morrey-type spaces. Taiwan. J. Math. 18(5), 1527–1548 (2014)

    Article  MathSciNet  Google Scholar 

  41. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, 2010, pp. xi+281. Springer, Berlin (2010)

  42. Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey–Campanato and related smoothness spaces. Sci. China Math. 58(9), 1835–1908 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Professor Wen Yuan for the discussion with the second author. The authors are also grateful to Dr. Shohei Nakamura for his pointing out our mistake in the assumptions in Lemmas 8 and 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny Ivanal Hakim.

Appendix: Examples of functions

Appendix: Examples of functions

Let \(1 < q \le p < \infty \), \(1 < q_0 \le p_0 < \infty \) and \(1 < q_1 \le p_1 < \infty \) satisfy \(p_0 < p < p_1\) and

$$\begin{aligned} \frac{q}{p} = \frac{q_0}{p_0} = \frac{q_1}{p_1}. \end{aligned}$$

The bidual of \(\widetilde{\mathcal M}^p_q\) is known to be \({\mathcal M}^p_q\) [38, Theorem 1.3]. However, we can show that it is a closed proper subspace of the closure \( {\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1} \) as the following example shows:

Example 1

For simplicity, we assume \((p,p_0,p_1,q,q_0,q_1)=(4,2,6,2,1,3).\) However, we can readily pass to the general case. Define \(f_\mathbf{e}(x) := \frac{3}{4}\mathbf{e} + \frac{1}{4} x\), where \(\mathbf{e} \in \{0, 1\}^n\). Note that each \(f_\mathbf{e}\) maps \([0, 1]^n\) to \([0, 1]^n\) injectively. Define \(g^k_\mathbf{e}(x) := 4^{k+1}f_\mathbf{e}(4^{-k}x)\). Let \(E_0 = [0, 1]^n\) and define \(E_k\) inductively by

$$\begin{aligned} E_{k+1}:= \bigcup _{\mathbf{e} \in \{0, 1\}^n } g^{k+1}_\mathbf{e}(E_k) \subset [0,4^{k+1}]^n. \end{aligned}$$

Note that \(E_k\) is a subset of \(E_{k+1}\) and that \(E_k\) is made up of \(2^{kn}\) disjoint cubes of volume 1. Thus,

$$\begin{aligned} \Vert \chi _{E_k}\Vert _{{\mathcal M}^4_2} \sim \Vert \chi _{E_k}\Vert _{{\mathcal M}^6_3} \sim \Vert \chi _{E_k}\Vert _{{\mathcal M}^8_4} \sim 1. \end{aligned}$$

Let \(f=\lim \nolimits _{k \rightarrow \infty }\chi _{E_k}\). Since g is an unbounded set made up of disjoint union of cubes having volume 1,

$$\begin{aligned} \Vert f-g\Vert _{{\mathcal M}^6_3}\ge 1 \end{aligned}$$

for all \(g \in L^\infty _\mathrm{c}\). Thus \(f \notin \widetilde{\mathcal M}^6_3\).

Let us obtain an intrinsic description of \(\overline{{\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}}^{{\mathcal M}^p_q}\).

Lemma 36

Let \(1 < q \le p < \infty \), \(1 < q_0 \le p_0 < \infty \) and \(1 < q_1 \le p_1 < \infty \) satisfy \(p_0 < p < p_1\) and

$$\begin{aligned} \frac{q}{p} = \frac{q_0}{p_0} = \frac{q_1}{p_1}. \end{aligned}$$

If \(f \in \overline{{\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}}^{{\mathcal M}^p_q}\), then there exists a function \(\{g_j\}_{j=1}^\infty \subset L^\infty \) such that \(\{\chi _{\{g_j \ne 0\}}\log |g_j|\}_{j=1}^\infty \subset L^\infty \) and that \(g_j \rightarrow f\) in \({\mathcal M}^p_q\). In particular, the space \(\overline{{\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}}^{{\mathcal M}^p_q}\) does not depend on \(p_0,q_0,p_1\) and \(q_1\).

Proof

From the definition of the closure, we may assume that \(f \in {\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}\). In this case, we can take \(g_j=\chi _{\{2^{-j} \le |f| \le 2^j\}}f\) for \(j \in {\mathbb N}\).

Before proving Proposition 1, let us recall the relation between seven function spaces and then let us state the plan of the proving Proposition 1. Note that we have five different spaces in view of (14) and (16).

  1. 1.

    In view of (9) and (11), we prove that \(\overset{\diamond }{\mathcal M}{}^p_q\) is different from any other space.

  2. 2.

    \([\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \) is different from any other space.

  3. 3.

    We check (13).

Remark 2

Proposition 1 is proved as follows:

  1. 1.

    We shall show that \([\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \) is different from other four function spaces and that inclusions (13) is strict. In view of (11), (13), and (17), it suffices to compare \([\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \) with \(\overset{*}{\mathcal M}{}^p_q\) and \(\overset{\diamond }{\mathcal M}{}^p_q\).

    1. (a)

      If we define \(f(x):=|x|^{-n/p}\chi _{B(0,1)}(x)\), then f violates [42, (2.8)]. This means that \(f \notin \overset{\diamond }{\mathcal M}{}^p_q\). By Theorem 1, we have \(f \in [\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \). If we mollify f in Example 1, then we obtain a function in \(\overset{\diamond }{\mathcal M}{}^p_q\). But this function is not in \([\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \) from the criterion of Theorem 1.

    2. (b)

      Let us prove (13). To this end, we may assume \(f \in L^\infty _\mathrm{c}\) because the both function spaces have a common equivalent norm \({\mathcal M}^p_q\). Assuming \(f \in L^\infty _\mathrm{c}\), we have \(\chi _{[a,b]}(|f|)f \in L^\infty _\mathrm{c}\). Thus, in the light of the criterion of Theorem 1, we have \(f \in [\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \). We need to show that the inclusion is strict. If we define \(f(x):=|x|^{-n/p}(1-\chi _{B(0,1)}(x))\), then f violates [42, (2.9)]. This means that \(f \notin \overset{*}{\mathcal M}{}^p_q\). Meanwhile by Theorem 1, we have \(f \in [\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \).

    3. (c)

      We learn \(f \in \overline{{\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}}^{{\mathcal M}^p_q} {\setminus } [\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta \ne \emptyset \), where f is the function in Example 1 in the present paper. Meanwhile, Lemma 36 shows that \(f(x)=|x|^{-n/p} \in [\widetilde{\mathcal M}^{p_0}_{q_0},\widetilde{\mathcal M}^{p_1}_{q_1}]^\theta {\setminus } \overline{{\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}}^{{\mathcal M}^p_q}. \)

  2. 2.

    By using these results, we can check that we do not have any other inclusion and that the inclusions are strict.

    1. (a)

      We have no inclusionship \(\overset{\diamond }{\mathcal M}{}^p_q\) and \(\overset{*}{\mathcal M}{}^p_q\) according to [42, Lemma 2.35]. Hence, \(\overset{\diamond }{\mathcal M}{}^p_q\) is different from any other spaces in view of (17) and the same applies to \(\overset{*}{\mathcal M}{}^p_q\) in view of the function defined in [42, (2.12)].

    2. (b)

      From the function f in Example 1, \(\overline{{\mathcal M}^{p_0}_{q_0} \cap {\mathcal M}^{p_1}_{q_1}}^{{\mathcal M}^p_q}\) is different from \(\widetilde{\mathcal M}^p_q\).

The Morrey space \({\mathcal M}^p_q\) contains \(|x|^{-n/p}\) when \(1 \le q<p<\infty \). If we start with this function, we learn that the complex function \(|x|^{\frac{-n-it}{p}}\) does not belong to the desired space as the following proposition shows:

Proposition 4

Let \(1 \le q<p<\infty \) and \(f(t,x):=|x|^{\frac{-n-it}{p}}\). Then \(t \in {\mathbb R} \mapsto f(t,\cdot ) \in {\mathcal M}^p_q\) is not continuous.

Proof

It suffices to disprove continuity at \(t=0\). Let \(|t|<p\). Note that

$$\begin{aligned} |f(t,x)-f(0,x)|=2|x|^{-\frac{n}{p}} \left| \sin \left( \frac{t}{2p}\log |x|\right) \right| \end{aligned}$$

and hence if \(R=\exp (t^{-1}p)\), then

$$\begin{aligned}&\Vert f(t,\cdot )-f(0,\cdot )\Vert _{{\mathcal M}^p_q}\\&\quad \ge 2 |B(0,2R)|^{\frac{1}{p}-\frac{1}{q}} \left( \int _{B(0,2R) {\setminus } B(0,R)}|x|^{-\frac{nq}{p}} \left| \sin \left( \frac{t}{2p}\log |x|\right) \right| ^q\,dx \right) ^{\frac{1}{q}}\\&\quad \ge 2 \sin \frac{1}{2}\cdot |B(0,2R)|^{\frac{1}{p}-\frac{1}{q}} \left( \int _{B(0,2R) {\setminus } B(0,R)}|x|^{-\frac{nq}{p}}\,dx \right) ^{\frac{1}{q}}\\&\quad \ge 2 \sin \frac{1}{2}\cdot |B(0,R)|^{\frac{1}{p}-\frac{1}{q}} \left( \int _{B(0,2R) {\setminus } B(0,R)}(2R)^{-\frac{nq}{p}}\,dx \right) ^{\frac{1}{q}}\\&\quad \ge C_{p,q}>0, \end{aligned}$$

as was to be shown.

Proposition 5

Let \(1 \le q<p<\infty \) and \(f(t,x):=|x|^{\frac{-n-it}{p}}\). Define

$$\begin{aligned} F(t,x):=\int _0^t f(s,x)\,ds. \end{aligned}$$

Then \(t \in {\mathbb R} \mapsto F(t,\cdot ) \in {\mathcal M}^p_q\) is Lipschitz continuous but nowhere differentiable.

Proof

Lipschitz continuity of the function F follows from Lemma 12. Let us disprove that f is differentiable. We calculate

$$\begin{aligned} \frac{F(t_2,x)-F(t_1,x)}{t_2-t_1}-f(t_1,x) = \frac{|x|^{-\frac{n+i t_1}{p}}}{t_2-t_1} \int _{t_1}^{t_2} |x|^{-\frac{i(s-t_1)}{p}}-1\,ds. \end{aligned}$$

Note that

$$\begin{aligned} \mathrm{Im}\left( |x|^{-\frac{i(s-t_1)}{p}}-1\right) =- \sin \left( \frac{s-t_1}{p}\log |x|\right) \end{aligned}$$

and hence for \(|x|>1\), and \(t_2>t_1\)

$$\begin{aligned}&\left| \frac{F(t_2,x)-F(t_1,x)}{t_2-t_1}-f(t_1,x)\right| \\&\quad \ge \frac{|x|^{-\frac{n}{p}}}{t_2-t_1} \left| \int _{t_1}^{t_2} \sin \left( \frac{s-t_1}{p}\log |x|\right) \,ds \right| \\&\quad = \frac{p|x|^{-\frac{n}{p}}}{(t_2-t_1)\log |x|} \left( 1-\cos \frac{t_2-t_1}{p}\log |x|\right) . \end{aligned}$$

Fix \(t_1,t_2 \in {\mathbb R}\) so that \(0<t_2-t_1<10^{-1}p\). Let D be the annulus given by

$$\begin{aligned} D:=\left\{ x \in {\mathbb R}^n:\frac{1}{2}<\frac{t_2-t_1}{p}\log |x|<1 \right\} , \end{aligned}$$

which does not intersect the unit ball \(|x|<1\). Note that \(\sup _D |x| \le 3\inf _D |x|.\) Therefore,

$$\begin{aligned}&\left\| \frac{F(t_2,\cdot )-F(t_1,\cdot )}{t_2-t_1}-f(t_1,\cdot ) \right\| _{{\mathcal M}^p_q}\\&\quad \ge \left\| \frac{p|\cdot |^{-\frac{n}{p}}}{(t_2-t_1)\log |\cdot |} \left( 1-\cos \frac{t_2-t_1}{p}\log |\cdot |\right) \chi _D \right\| _{{\mathcal M}^p_q}\\&\quad \ge p\left( 1-\cos \frac{1}{2}\right) \left\| |\cdot |^{-\frac{n}{p}}\chi _D \right\| _{{\mathcal M}^p_q} \ge c_p>0. \end{aligned}$$

Therefore,

$$\begin{aligned} \lim _{t_2 \rightarrow t_1} \frac{F(t_2)-F(t_1)}{t_2-t_1}=f(t_1) \end{aligned}$$
(94)

does not take place in \({\mathcal M}^p_q\). However, we know that (94) holds in the topology of \({\mathcal S}'\). Therefore, if F were differentiable at \(t=t_1\), then the derivative would be \(f(t_1)\). This is a contradiction.

Finally, we conclude this paper with a remedy of this problem.

Proposition 6

Let \(1<q_0 \le p_0<\infty \) and \(1<q_1 \le p_1<\infty \). If \(f \in {\mathcal G}({\mathcal M}^{p_0}_{q_0},{\mathcal M}^{p_1}_{q_1})\), then the limit

$$\begin{aligned} f'(j+it)=\lim _{h \rightarrow 0}\frac{f(j+i(t+h))-f(j+it)}{ih} \end{aligned}$$

exists for almost all t in the weak-* topology of \({\mathcal M}^{p_j}_{q_j}\) for \(j=0,1\).

Proof

We just combine that the predual space of the Morrey space \({\mathcal M}^{p_j}_{q_j}\) is separable and the Rademacher theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakim, D.I., Sawano, Y. Interpolation of generalized Morrey spaces. Rev Mat Complut 29, 295–340 (2016). https://doi.org/10.1007/s13163-016-0192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-016-0192-3

Keywords

Mathematics Subject Classification

Navigation