Skip to main content
Log in

Stability theorems for Gagliardo–Nirenberg–Sobolev inequalities: a reduction principle to the radial case

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

In this paper we investigate the quantitative stability for Gagliardo–Nirenberg–Sobolev inequalities. The main result is a reduction theorem, which states that, to solve the problem of the stability for Gagliardo-Nirenberg-Sobolev inequalities, one can consider only the class of radial decreasing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  2. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MATH  MathSciNet  Google Scholar 

  3. Carlen, E.A., Frank, R.L., Lieb, E.H.: Stability estimates for the lowest eigenvalue of a Schrödinger operator. Geom. Funct. Anal. (2013) (to appear)

  4. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to Sobolev and Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carlen, E.A., Figalli, A.: Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller–Segel equation. Duke Math. J. 162, 579–625 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. 11, 1105–1139 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advenaced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Boston (1996)

  11. Lions, P.L.: The concentration-compactness principle in the Calculus of Variation. The Locally compact case, part 1, Annales de l’I. H. P., 4, pp. 109–145 (1984)

  12. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Revista Matemática. iberoamericana 2, 45–121 (1985)

  13. Struwe, M.: Variational Methods, vol. 34. Springer, Berlin (2008)

  14. Serrin, J., Tang, M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Talenti, G.: Best constants in Sobolev inequality. Ann. Mat. Pura Appl. (110), 353–372 (1976)

    Google Scholar 

Download references

Acknowledgments

The author wish to warmly thank F. Maggi for its enlightening advise during the development of this work, and L. Brasco, G. De Philippis and A. Pratelli for several useful discussions about the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ruffini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffini, B. Stability theorems for Gagliardo–Nirenberg–Sobolev inequalities: a reduction principle to the radial case. Rev Mat Complut 27, 509–539 (2014). https://doi.org/10.1007/s13163-013-0144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-013-0144-0

Keywords

Mathematics Subject Classification (1991)

Navigation