Skip to main content
Log in

A planar convex domain with many isolated “ hot spots” on the boundary

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We construct a convex domain such that the second Neumann eigenfunction has an arbitrary number of isolated local maximum points on the boundary. This domain, which is close to a sector, is constructed by combining thin isosceles triangles. Then we study the shape of the second Neumann eigenfunction on isosceles triangles. In particular, we show that if the isosceles triangle is subequilateral, then the second Neumann eigenvalue is simple and the associated eigenfunction has exactly two maximum points which are located at two corners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atar, R., Burdzy, K.: On Neumann eigenfunctions in lip domains. J. Am. Math. Soc. 17, 243–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashbaugh, M., Levine, H.: Inequalities for the Dirichlet and Neumann eigenvalues of the Laplacian for domains on spheres, Journées “Equations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1997), Exp. No. I, École Polytech., Palaiseau (1997).

  3. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Interscience Publishers Inc., New York (1953)

    Google Scholar 

  4. Burdzy, K.: The hot spots problem in planar domains with one hole. J. Duke Math. 129, 481–502 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bañuelos, R., Burdzy, K.: On the “hot spots” conjecture of. J. Rauch. J. Funct. Anal. 164, 1–33 (1999)

    Article  MATH  Google Scholar 

  6. Bass, R., Burdzy, K.: Fiber Brownian motion and the “ hot spots” problem. J. Duke Math. 105, 25–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burdzy, K., Werner, W.: A counterexample to the “hot spots” conjecture. Ann. Math. 149, 309–317 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casten, R., Holland, C.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik (Berlin) 12, 30–39 (1972)

    Article  Google Scholar 

  10. Grebenkov, D., Nguyen, B.: Geometric structure of Laplacian eigenfunctions. arXiv:1206.1278v1 (2012)

  11. Hartman, P., Wintner, A.: On the local behavior of solutions of non-parabolic partial differential equations. Am. J. Math. 75, 449–476 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helffer, B., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Owen, M.P.: Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains. Commum. Math. Phys. 202, 629–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jerison, D., Nadirashvili, N.: The “hot spots” conjecture for domains with two axes of symmetry. J. Am. Math. Soc 13, 741–772 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kawohl, B.: Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)

    Google Scholar 

  15. Laugesen, R., Siudeja, B.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equ. 249, 118–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15, 401–454 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. McCartin, B.: Eigenstructure of the equilateral triangle. II. The Neumann problem. Math. Probl. Eng. 8, 517–539 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miyamoto, Y.: An instability criterion for activator-inhibitor systems in a two-dimensional ball. J. Differ. Equ. 229, 494–508 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miyamoto, Y.: An instability criterion for activator-inhibitor systems in a two-dimensional ball II. J. Differ. Equ. 239, 61–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miyamoto, Y.: On the shape of the stable patterns for activator-inhibitor systems in two-dimensional domains. Q. Appl. Math. 65, 357–374 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Miyamoto, Y.: The “hot spots” conjecture for a certain class of planar convex domains. J. Math. Phys. 50, 103530 (2009)

    Article  MathSciNet  Google Scholar 

  22. Miyamoto, Y.: Global bifurcation and stable two-phase separation for a phase field model in a disk. Discret. Contin. Dyn. Syst. 30, 791–806 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pascu, M.: Scaling coupling of reflecting Brownian motions and the hot spots problem. Trans. Am. Math. Soc. 354, 4681–4702 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Payne, L.: On two conjectures in the fixed membrane eigenvalue problem. Z. Angew. Math. Phys. 24, 721–729 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rauch, J.: Five problems: an introduction to the qualitative theory of partial differential equations. Partial Differential Equations and Related Topics (Program, Tulane Univ., New Orleans, La., 1974). Lecture Notes in Mathematics, vol. 446, pp. 355–369. Springer, Berlin (1975).

Download references

Acknowledgments

The author thanks anonymous referees for the careful reading of the manuscript and comments pointing out that the proofs of Lemmas 3.2 and 3.5 of the previous version of the manuscript were imperfect.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Miyamoto.

Additional information

This work was partially supported by Grant-in-Aid for Young Scientists (B) (Subject No. 21740116).

About this article

Cite this article

Miyamoto, Y. A planar convex domain with many isolated “ hot spots” on the boundary. Japan J. Indust. Appl. Math. 30, 145–164 (2013). https://doi.org/10.1007/s13160-012-0091-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-012-0091-z

Keywords

Mathematics Subject Classification (2010)

Navigation