Skip to main content
Log in

Drastic Turnover of Bryophyte Vegetation on Bog Microforms Initiated by Air Pollution in Northeastern Estonia and Bordering Russia

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Human influence on bogs, including air pollution, causes changes in vegetation leading to the degradation of an ombrotrophic bog ecosystem into a more uniform transitional mire-like system. We have hypothesized that intensive atmospheric alkaline pollution will cause an increase in water pH and convergence of bryophyte species composition among microforms. We also expected that bog-specific acidophilic species will be replaced by species indigenous to neutral pH habitats. Through GLM and DCA analyses, we found that although natural acidic bogs are more species poor than polluted bogs, the increase in pH can lead to a decrease in bog-specific vegetation. In polluted bogs, the species composition in different bog microforms will become similar; in particular bog-specific Sphagnum mosses will be increasingly replaced by more tolerant brown mosses, particularly in lawns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams KJ, Preston CD (1992) Evidence for the effects of atmospheric pollution on bryophytes from national and local recording. In: Harding PT (ed) Biological recording of changes in British Wildlife. HMSO, London, pp 31–43

    Google Scholar 

  • Andrus RE (1986) Some aspects of Sphagnum ecology. Canadian Journal of Botany 64:416–426

    Article  Google Scholar 

  • Bityukova VR, Kasimov NS (2012) Atmospheric pollution of Russia’s cities: assessment of emissions and emissions based on statistical data. Geofizika 29:53–67

    Google Scholar 

  • Bragg OM, Clymo RS (1995) Seven years of change following liming of Sphagnum communities in sector VII of the Loch Fleet catchment. Chemistry and Ecology 9:3231–3245

    Article  Google Scholar 

  • Bragg OM, Tallis JH (2001) The sensitivity of peat-covered upland landscapes. Catena 42:45–360

    Article  Google Scholar 

  • Bruland GL, Richardson CJ (2005) Hydrologic, edaphic and vegetative responses to microtopographic reestablishment in a restored wetland. Restoration Ecology 13:515–523

    Article  Google Scholar 

  • Caporn SJM, Carroll JA, Studholme C, Lee JA (2006) Recovery of ombrotrophic Sphagnum mosses in relation to air pollution in the Southern Pennines. Report to Moors for the Future. Available via: http://www.moorsforthefuture.org.uk/sites/default/files/documents/2005_Caporn_Recovery%20of%20ombrotrophic%20Sphagnum%20moss.pdf

  • Clymo RS, Hayward PM (1982) The ecology of Sphganum. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, New York, pp 229–289

    Chapter  Google Scholar 

  • Constanza R, d’Arge R, de Groots R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Rskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Courtwright J, Findlay SEG (2011) Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands 31:239–249

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigewerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18:1–248

    Google Scholar 

  • Eurola S, Huttunen R (2006) Mire plant species and their ecology in Finland. In: Lindholm T, Heikkil R (eds) Finland–land of mires. Ekologista kirjallisuutta, Oulu, pp 127–144

    Google Scholar 

  • Fenton NJ, Bergeron Y (2006) Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. Journal of Vegetation Science 17:65–76

    Article  Google Scholar 

  • Gignac LD, Beckett PJ (1986) The effect of smelting operations on peatlands near Sudbury, Ontario, Canada. Canadian Journal of Botany 64:1138–1147

    Article  CAS  Google Scholar 

  • Goubet P, Theíbaud G, Peítel G (2006) Ecological constraints on Sphagnum bog development: a conceptual model for conservation. Revue d’Ecologie (La Terre et la Vie) 61:101–116

    Google Scholar 

  • Gunnarsson U, Flodin LA (2007) Vegetation shifts towards wetter site conditions on oceanic ombrotrophic bogs in southwestern Sweden. Journal of Vegetation Science 18:95–604

    Article  Google Scholar 

  • Hájkova P, Hájek M, Rybniček K, Jiroušek M, Tichy L, Králová Š, Mikulášková E (2011) Long-term vegetation changes in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. Journal of Vegetation Science 22:891–904

    Article  Google Scholar 

  • Hill MO, Bell N, Gruggeman-Nannenga MA, Brugues M, Cano MJ, Enroth J, Flatberg KI, Frahm JP, Gallego MT, Garilleti R, Guerra J, Hedenäs L, Holyoak DT, Hyvönen J, Ignatov MS, Lara F, Mazimpaka V, Muňoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology 28:198–267

    Article  Google Scholar 

  • Ingerpuu N, Nurkse K, Vellak K (2014) Bryophytes in Estonian mires. Estonian Journal of Ecology 63:3–14

    Article  Google Scholar 

  • Kapfer J, Grytnes J-A, Gunnarsson U, Birks HJB (2010) Fine-scale changes in vegetation composition in a boreal mire over 50 years. Journal of Ecology 99:1179–1189

    Article  Google Scholar 

  • Karofeld E (1996) The effects of alkaline fly ash precipitation on the Sphagnum mosses in Niinsaare bog, North-East Estonia. Suo 47:105–114

    Google Scholar 

  • Karofeld E (1998) The dynamics of the formation and development of hollows in raised bogs in Estonia. The Holocene 8:715–722

    Article  Google Scholar 

  • Karofeld E, Vellak K, Marmor L, Paal J (2007) The influence of alkaline dust input on the bogs in North-East Estonia. Forestry Studies 47:47–70

    Google Scholar 

  • Kenkel NC (1988) Spectral analysis of hummock-hollow pattern in a weakly minerotrophic mire. Vegetatio 78:45–52

    Article  Google Scholar 

  • Krunk M, Podbielska K, Duriasz J (2003) Hydrochemical distinction and function of ecotone between Sphagnum bog and agricultural watershed. Polish Journal of Ecology 51:255–260

    Google Scholar 

  • Lachance D, Lavoie C (2004) Vegetation of Sphagnum bogs in highly disturbed landscape: relative influence of abiotic anthropogenic factors. Applied Vegetation Science 7:183–192

    Google Scholar 

  • Lee JA, Parson AN, Baxter R (1993) Sphagnum species and polluted environments, past and future. Advances in Bryology 5:297–313

    Google Scholar 

  • Liblik V, Rätsep A (1994) Pollution sources and distribution of pollutants. In: Punning JM (ed) The influence of natural and anthropogenic factors on the development of landscapes. The results of a comprehensive study in NE Estonia. Institute of Ecology, Estonian Academy of Sciences, Tallinn, pp 70–93

    Google Scholar 

  • Liblik V, Pensa M, Rätsep A (2003) Air pollution zones and harmful pollution levels of alkaline dust for plants. Water, Air, and Soil Pollution: Focus 3:193–203

    CAS  Google Scholar 

  • Liiv S, Kaasik M (2004) Trace metals in mosses in the Estonian oil shale processing region. Journal of Atmospheric Chemistry 49:563–578

    Article  CAS  Google Scholar 

  • Limpens J, Tomassen HBM, Berendse F (2003) Expansion of Sphagnum fallax in bogs: striking the balance between N and P availability. Journal of Bryology 25:83–90

    Article  Google Scholar 

  • Mälson K, Backéus I, Rydin H (2008) Long-term effects of drainage and initial effects of hydrological restoration on rich fen vegetation. Applied Vegetation Science 11:99–106

    Article  Google Scholar 

  • Masing V, Botch M, Läänelaid A (2009) Mires of the former Soviet Union. Wetlands Ecology and Management 18:397–433

    Article  Google Scholar 

  • Mitch WJ, Gosselnick JG (2000) The value of wetlands: importance of scale and landscape setting. Ecological Economics 35:25–33

    Article  Google Scholar 

  • Moen A (1999) National atlas of Norway. Vegetation. Norwegian Mapping Authority, Høenfoss

    Google Scholar 

  • Nungesser M (2003) Modelling microtopography in boreal peatlands: hummocks and hollows. Ecological Modelling 165:175–205

    Article  Google Scholar 

  • Orru M (1995) Eesti turbasood. Eesti Geoloogiakeskus, Tallinn

    Google Scholar 

  • Paal J, Leibak E (2011) Estonian mires: inventory of habitats. Regio Ltd, Tartu

    Google Scholar 

  • Paal J, Vellak K, Liira J, Karofeld E (2010) Bog recovery in Northeastern Estonia after the reduction of atmospheric pollutant input. Restoration Ecology 18(S2):387–400

    Article  Google Scholar 

  • Paal J, Degtjarenko P, Suija A, Liira J (2013) Vegetation responses to long-term alkaline cement dust pollution in Pinus sylvestris-dominated boreal forests–niche breadth along the soil pH gradient. Applied Vegetation Science 16:248–259

    Article  Google Scholar 

  • Pärtel M, Helm A, Ingerpuu N, Reier Ü, Tuvi EL (2004) Conservation of Northern European plant diversity: the correspondence with soil pH. Biological Conservation 120:525–531

    Article  Google Scholar 

  • Pensa M, Jalkanen R, Liblik V (2007) Variation in Scots pine needle longevity and nutrient conservation in different habitats and latitudes. Canadian Journal of Forest Research 37:1599–1604

    Article  CAS  Google Scholar 

  • Pets LI, Vaganov PA, Knoth J, Haldna ÜL, Schwenke H, Schnier C, Juga RJ (1985) Microelements in oil shale ash of the Baltic thermoelectric power plant. Oil Shale 2:379–390

    Google Scholar 

  • Pouliot R, Rochefort L, Karofeld E, Mercier C (2011) Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: is there a link? Acta Oecologica 37:346–354

    Article  Google Scholar 

  • Pouliot R, Rochefort L, Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Applied Vegetation Science 15:369–382

    Article  Google Scholar 

  • Price JS, Whitehead GS (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32–40

    Article  Google Scholar 

  • Punning JM, Ilomets M, Karofeld E, Toots M, Kozlova M, Pelekis L, Taure J (1987) Mõningate keemiliste elementide sisalduste variatsioonid Liivjärve raba turbalasundis ning Räätsma järve põhjasetteis. In: Ilomets M (ed) Kurtna järvestiku looduslik seisund ja selle areng. Tallinn, Valgus, pp 62–67

    Google Scholar 

  • Robroek BJM, Limpens J, Breeuwer AJG, van Ruijven J, Schouten MGC (2007) Precipitation determines the persistence of hollow Sphagnum species on hummocks. Wetlands 27:979–986

    Article  Google Scholar 

  • Rydin H, Jeglum JK (2006) The biology of peatland. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18:648–656

    Article  Google Scholar 

  • Shu J, Ma K, Wang J, Zhao J, He K (2010) Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodiversity and Conservation 19:1279–1295

    Article  Google Scholar 

  • Sjörs H (1961) Surface patterns in Boreal peatlands. Endeavour 20:217–224

    Google Scholar 

  • Smith ML, Meiman PJ, Brummer JE (2012) Characteristics of hummocked and non-hummocked Colorado riparian areas and wetlands. Wetlands Ecology and Management. doi:10.1007/s11273-012-9263-5

    Google Scholar 

  • Söderström L, Urmi E, Váňa J (2007) The distribution of Hepaticae and Anthocerotae in Europe and Macaronesia Update 1-427. Cryptogamie Bryologie 28:299–350

    Google Scholar 

  • Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Swanson DK (2007) Interaction of mire microtopography, water supply, and peat accumulation in boreal mires. Suo 58:37–47

    Google Scholar 

  • Tomasson HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of Applied Ecology 41:139–150

    Article  Google Scholar 

  • Tousignant ME, Pellerin S (2010) The relative impact of human disturbances on the vegetation of a large wetland complex. Wetlands 30:333–344

    Article  Google Scholar 

  • Triisberg T, Karofeld E, Liira J, Orru M, Ramst R, Paal J (2014) Microtopography and the properties of residual peat are convenient indicators for restoration planning of abandoned extracted peatlands. Restoration Ecology 22:31–39

    Article  Google Scholar 

  • Turetsky MR, St. Louis VL (2006) Disturbance in boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer-Verlag, Berlin, pp 359–379

    Chapter  Google Scholar 

  • Vanderpoorten A, Goffinet B (2006) Introduction to bryophytes. Cambridge University Press, New York

    Google Scholar 

  • Vivian-Smith G (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology 85:71–82

    Article  Google Scholar 

  • Ward SE, Ostle NJ, McNamara NP (2010) Litter evenness influences short-term peatland decomposition processes. Oecologia 164:511–520

    Article  PubMed  Google Scholar 

  • Weltzin JF, Harth C, Gridgham SD, Pastor J, Vonderharr M (2001) Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128:557–565

    Article  Google Scholar 

  • Wieder RK, Vitt, DH (eds) (2006) Boreal peatland ecosystems. Ecological Studies 188:1–435

  • Zvereva EL, Kozlov MV (2011) Impacts of industrial polluters on bryophytes: a meta-analysis of observational studies. Water, Air, and Soil Pollution 218:573–586

    Article  CAS  Google Scholar 

  • Zvereva EL, Toivonen E, Kozlov MV (2008) Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Global Ecology and Biogeography 17:305–319

    Article  Google Scholar 

Download references

Acknowledgments

We thank Nele Ingerpuu for her help during fieldwork. This study was financed by the Centre of Excellence FIBIR and the target-financing projects SF0180012s09, SF0180025s12 and RP1LMBOTK. Marinus L. Otte and two reviewers provided useful comments on the manuscript. Robert Szava-Kovats and Rodney G. O. Burton helped to improve the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Vellak.

Appendix

Appendix

Table 5 List of bryophyte species, their vegetation type: B–bog; F–fen (according to Ingerpuu et al. 2014) and microform preference in studied sites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vellak, K., Liira, J., Karofeld, E. et al. Drastic Turnover of Bryophyte Vegetation on Bog Microforms Initiated by Air Pollution in Northeastern Estonia and Bordering Russia. Wetlands 34, 1097–1108 (2014). https://doi.org/10.1007/s13157-014-0569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0569-3

Keywords

Navigation