Skip to main content

Advertisement

Log in

Tropical Peat Accumulation in Central Amazonia

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Amazonia has been recently included in discussions on the role of tropical peatlands in the global carbon cycle owing to extensive peatlands up to 7.5 m thick, reported from Western Amazonia (Peru). The aim of this study was to explore peat accumulation in Central Amazonia (Brazil). Of seven field sites, six located in the Negro River basin and one close to the junction of the Negro River with the Amazon, four had a peat deposit from 0.10 to 2.10 m thick. Another two sites had other organic soil type which could not be called peat. Only one site did not have any organic deposit. The loss-on-ignition (LOI), carbon content and dry bulk density, measured for the four peatland sites, varied from 17.7 to 97.4 %, 11 to 59 %, and 0.0002 to 0.572 g cm−3, respectively. All sites were classified as minerotrophic based on pH and peat thickness. The study confirms that Amazonian peatlands are not limited to Western Amazonia but also exist in Central Amazonia. We could not find as thick and extensive peats as in Western Amazonia, which we suggest is due to differences in rainfall and hydrology, tectonic conditions, topography, subsoil type and frequency of fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot J-L (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Niño / Southern Oscillation. Nature 425:493–497

    Article  PubMed  CAS  Google Scholar 

  • Andrejko MJ, Fiene F, Cohen AD (1983) Comparison of ashing techniques for determination of the inorganic content of peats. In: Jarret PM (ed) Testing of peats and organic soils. ASTM, PA, pp 5–20

    Chapter  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil—a biodiversity tragedy in progress. Frontiers in Ecology and the Environment 7:79–87

    Article  Google Scholar 

  • Capps KA, Graça MAS, Encalada AC, Flecker AS (2011) Leaf-litter decomposition across three flooding regimes in a seasonally flooded Amazonian watershed. Journal of Tropical Ecology 27:205–210

    Article  Google Scholar 

  • Carneiro Filho A, Schwartz D, Tatumi SH, Rosique T (2002) Amazonian paleodunes provide evidence for drier climate phases during the Late Pleistocene–Holocene. Quaternary Research 58(2):205–209

    Article  Google Scholar 

  • Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems. I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466–472

    Article  Google Scholar 

  • Dubroeucq D, Volkoff B (1998) From oxisols to spodosols and histosols: evolution of the soil mantles in the Río Negro basin (Amazonia). Catena 32:245–280

    Article  Google Scholar 

  • Ferreira LV (1997) Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodiversity and Conservation 6:1353–1363

    Article  Google Scholar 

  • Ferreira LV (2000) Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: implications for future design of protected areas. Biodiversity and Conservation 9:1–14

    Article  CAS  Google Scholar 

  • Flores B, Piedade MT, Nelson B (2012) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecology and Diversity. doi:10.1080/17550874.2012.716086

    Google Scholar 

  • Forsberg BR, Hashimoto Y, Rosenqvist Å, Pellon de Miranda F (2000) Tectonic fault control of wetland distributions in the Central Amazon revealed by JERS-1 radar imagery. Quaternary International 72:61–66

    Article  Google Scholar 

  • Goulding M (1990) Amazon: the flooded forest. Sterling, New York

    Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334(6053):232–235

    Article  PubMed  CAS  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514

    Article  CAS  Google Scholar 

  • Householder JE, Janovec JP, Tobler MW, Page S, Lähteenoja O (2012) Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands 32(2):359–368

    Article  Google Scholar 

  • Irmler U (1979) Considerations on structure and function of the “Central-Amazonian inundation forest ecosystem” with particular emphasis on selected soil animals. Oecologia 43:1–18

    Article  Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology 11:1788–1797

    Article  Google Scholar 

  • Jowsey PC (1965) An improved peat sampler. New Phytologist 65:245–248

    Article  Google Scholar 

  • Kalliola R, Salo J, Puhakka M, Rajasilta M, Häme T, Neller RJ, Räsänen ME, Danjoy Arias WA (1992) Upper Amazon channel migration: implications for vegetation perturbance and succession using bitemporal Landsat MSS images. Naturwissenschaften 79:75–79

    Article  Google Scholar 

  • Lähteenoja (2011) Carbon dynamics and ecosystem diversity of Amazonian peatlands. PhD thesis. Annales universitatis turkuensis, AII 264. 91 p

  • Lähteenoja O, Page SE (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. Journal of Geophysical Research, Biogeosciences 116:G02025. doi:10.1029/2010JG001508

    Article  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009a) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145

    Article  Google Scholar 

  • Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009b) Amazonian peatlands: an ignored C sink and potential source. Global Change Biology 15:2311–2320

    Article  Google Scholar 

  • Lähteenoja O, Reategui YR, Räsänen M, del Castillo TD, Oinonen M, Page SE (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Global Change Biology 18(1):164–178

    Article  Google Scholar 

  • Latrubesse EM, Franzinelli E (2005) The late Quaternary evolution of the Negro River, Amazon, Brazil: Implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 70:372–397

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Noble CA (2008) Climate change, deforestation and the fate of the Amazon. Science 319:169–172

    Article  PubMed  CAS  Google Scholar 

  • Marchesi G (1975) Tra fiumi e foreste: con le tribù del Rio Negro d’Amazzonia. Instituto Storico Salesiano, Rome

    Google Scholar 

  • McMichael CH, Piperno DR, Bush MB, Silman MR, Zimmerman AR, Raczka MF, Lobato LC (2012) Sparse pre-Columbian human habitation in Western Amazonia. Science 336(6087):1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Morozova GS, Smith ND (2003) Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sedimentary Geology 157:15–29

    Article  CAS  Google Scholar 

  • Page SE, Rieley JO, Shotyk OW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London B 354:1885–1897

    Article  CAS  Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  PubMed  CAS  Google Scholar 

  • Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. Journal of Quaternary Science 19:625–635

    Article  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17:798–818

    Article  Google Scholar 

  • Parolin P, De Simone O, Haase K et al (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review 70:357–380

    Article  Google Scholar 

  • Qualls RG, Haines BL (1990) The influence of humic substances on the aerobic decomposition of submerged leaf litter. Hydrobiologia 206:133–138

    Article  CAS  Google Scholar 

  • Räsänen ME, Salo JS, Kalliola RJ (1987) Fluvial perturbance in the Western Amazon basin: regulation by long-term sub-Andean tectonics. Science 238:1398–1401

    Article  PubMed  Google Scholar 

  • Räsänen ME, Salo JS, Jungner H, Romero Pittman L (1990) Evolution of the Western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova 2:320–332

    Article  Google Scholar 

  • Räsänen M, Neller R, Salo J, Jungner H (1992) Recent and ancient fluvial depositionsystems in the Amazonian foreland basin, Peru. Geological Magazine 129:293–306

    Article  Google Scholar 

  • Rieley JO, Page SE (2005) Wise use of tropical peatlands: focus on Southeast Asia. Alterra—Wageningen University and Research Center and the EU INCO-STRAPEAT and RESTORPEAT Partnerships

  • Rossetti DF, Toledo PM, Góes AM (2005) New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution. Quaternary Research 63(1):78–89

    Article  Google Scholar 

  • Ruokolainen K, Schulman L, Tuomisto H (2001) On Amazonian peatlands. International Mire Conservation Group Newsletter 2001(4):8–10

    Google Scholar 

  • Santos UM, Bringel SRB, Bergamin-Filho H, Ribeiro MNG, Bananeira M (1984) Rios da bacia Amazônica. I. Afluentes do Rio Negro. Acta Amazonica 14(1–2):222–237

    CAS  Google Scholar 

  • Schulman L, Ruokolainen K, Tuomisto H (1999) Parameters for global ecosystem models. Nature 399:535–536

    Article  CAS  Google Scholar 

  • Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414:437–440

    Article  PubMed  CAS  Google Scholar 

  • Singer R, Araujo-Aguiar I (1986) Litter decomposing and ectomycorrhizal Basidiomycetes in an igapó forest. Plant Systematics and Evolution 153:107–117

    Article  Google Scholar 

  • Smith ND, Cross TA, Dufficy JP, Clough SR (1989) Anatomy of an avulsion. Sedimentology 36:1–23

    Article  Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends in Ecology & Evolution 19:654–660

    Article  Google Scholar 

  • Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Ambio 30:388–396

    PubMed  CAS  Google Scholar 

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative states. Science 334:230–232

    Article  PubMed  CAS  Google Scholar 

  • Sternberg HO (1987) Aggravation of floods in the Amazon River as a consequence of deforestation? Geografiska Annaler, Series A. Physical Geography 69a:201–219

    Google Scholar 

  • Suszczynski EF (1984) The peat resources of Brazil. In: Proceedings of the 7th International Peat Congress, Volume 1, Dublin, Ireland, pp 468–492

  • Vegas-Vilarrúbia T, Baritto F, López P, Meleán G, Ponce ME, Mora L, Gómez O (2010) Tropical Histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage. Geoderma 155:280–288

    Article  Google Scholar 

Download references

Acknowledgments

We thank João Rocha, Isis Perdigão, Brazilian villagers and the staff of the National Institute for Research in the Amazon (Instituto Nacional de Pesquisas da Amazônia, INPA) for help during the field work; Kari Kortekuru, Marko Pesu and Hanna Tuomisto for field equipment; Orlando Cruz Junior, Marjut Wallner and the Department of Geology of the University of Turku for laboratory facilities; and Kalle Ruokolainen and Leif Schulman. In addition, we thank the Kone Foundation, the GEOMA Modelling Network of the Brazilian Ministry of Science and the Societas Biologica Fennica Vanamo for funding. The collected peat samples belong to INPA. A portion of each sample was sent by INPA to the University of Turku, Finland, for the laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Outi Lähteenoja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lähteenoja, O., Flores, B. & Nelson, B. Tropical Peat Accumulation in Central Amazonia. Wetlands 33, 495–503 (2013). https://doi.org/10.1007/s13157-013-0406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-013-0406-0

Keywords

Navigation