Skip to main content

Advertisement

Log in

Drought as a Trigger for Rapid State Shifts in Kettle Ecosystems: Implications for Ecosystem Responses to Climate Change

  • Review
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Global climate change has raised important questions about ecosystem resilience and the likelihood of unexpected and potentially irreversible ecosystem state shifts. Conceptual models provide a framework for generating hypotheses about long-term ecosystem processes and their responses to external perturbations. In this article, we review the classic model of autogenic peatland encroachment into closed-basin kettle lakes (terrestrialization) as well as studies that document patterns of terrestrialization that are inconsistent with this hypothesis. We then present a new conceptual model of episodic, drought-triggered terrestrialization, which is consistent with existing data and provides a mechanism by which climatic variability could cause non-linear patterns of peatland development in these ecosystems. Next, we review data from comparative studies of kettle lakes along a peatland-development gradient to explore potential ecological and biogeochemical consequences of non-linear patterns of terrestrialization. Finally, we identify research approaches that could be used to test conceptual models of terrestrialization, investigate the ecological implications of non-linear patterns of peatland development, and improve our ability to predict responses of kettle systems to climate changes of the coming decades and century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkinson AC, Syed KJ, Flanagan LB (2011) Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. Journal of Geophysical Research. doi:10.1029/2010JG001512

  • Almendinger JE (1990) Groundwater control of closed-basin lake levels under steady-state conditions. Journal of Hydrology 112:293–318

    Article  Google Scholar 

  • Andersson G, Ganeli W, Stenson J (1988) The influence of animals on phosphorous cycling in lake ecosystems. Hydrobiologia 170:267–284

    Article  CAS  Google Scholar 

  • Anderson RL, Foster DR, Motzkin G (2003) Integrating lateral expansion into models of peatland development. Journal of Ecology 91:68–76

    Article  Google Scholar 

  • Blenckner T (2005) A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533:1–14

    Article  Google Scholar 

  • Booth RK (2010) Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America. Quaternary Science Reviews 29:720–731

    Article  Google Scholar 

  • Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environmental Resources 32:67–98

    Article  Google Scholar 

  • Bridgam SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008) Rapid carbon response of peatlands to climate change. Ecology 89:3041–3048

    Article  Google Scholar 

  • Brugam RB, Swain P (2000) Diatom indicators of peatland development at Pogonia Bog Pond, Minnesota, USA. The Holocene 10:453–464

    Article  Google Scholar 

  • Budelsky RA, Galatowitsch SM (2004) Establishment of Carex stricta Lam. seedlings in experimental wetlands with implications for restoration. Plant Ecology 175:91–105

    Article  Google Scholar 

  • Buell MF, Buell HF (1941) Surface level fluctuation in Cedar Creek Bog, Minnesota. Ecology 22:317–321

    Article  Google Scholar 

  • Buell MF, Buell HF (1975) Moat Bogs in the Itasca Park Area, Minnesota. Bulletin of the Torrey Botanical Club 102:6–9

    Article  Google Scholar 

  • Buell MF, Buell HF, Reiners WA (1968) Radial mat growth on Cedar Creek Bog, Minnesota. Ecology 49:1198–1199

    Article  Google Scholar 

  • Buffam I, Carpenter SR, Yeck W, Hanson PC, Turner MG (2010) Filling holes in regional carbon budgets: Predicting peat depth in a temperate lake district. Journal of Geophysical Research. doi:10.1029/2009JG001034

  • Buffam I, Turner MG, Desai AR, Hanson PC, Rusaks JA, Lottig NR, Stanley EH, Carpenter SR (2011) Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Global Change Biology 17:1193–1211

    Article  Google Scholar 

  • Bunting MJ, Warner BG (1998) Hydroseral development in southern Ontario: patterns and controls. Journal of Biogeography 25:3–18

    Article  Google Scholar 

  • Campbell DR, Duthie HC, Warner BG (1997) Post-glacial development of a kettle-hole peatland in southern Ontario. Ecoscience 4:404–418

    Google Scholar 

  • Carpenter SR (2003) Regime shifts in lake ecosystems: pattern and variation. Excellence in Ecology: Book 15. International Ecology Institute, Oldendorf/Luhe

  • Carpenter SR, Turner MG (2001) Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3:495–497

    Article  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chapin FS III, McGuire AD, Randerson J, Pielke R Sr, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter B, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology 6:211–223

    Article  Google Scholar 

  • Charman DJ (2002) Peatlands and environmental change. Wiley, West Sussex

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation: publication 242. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  • Colinvaux P (1986) Ecology. Wiley, New York

    Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions causes, and consequences. Earth-Science Reviews 81:93–134

    Article  Google Scholar 

  • Cowles HC (1901) The physiographic ecology of Chicago and vicinity. Botanical Gazette 31:145–182

    Article  Google Scholar 

  • Dansereau P, Segadas-Vianna F (1952) Ecological study of the peat bogs of eastern North America. I. Structure and evolution of vegetation. Canadian Journal of Botany 30:490–520

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Davis MB, Ford MS (1982) Sediment focusing in Mirror Lake, New Hampshire. Limnology and Oceanography 27:137–150

    Article  Google Scholar 

  • Dearing JA (1997) Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology 18:1–14

    Article  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–620

    Article  CAS  Google Scholar 

  • Epstein HE, Calef MP, Walker MD, Chapin FS III, Starfields AM (2004) Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biology 10:1325–1334

    Article  Google Scholar 

  • Fechner EJ, Hemond HF (1992) Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland. Global Biogeochemical Cycles 6:33–44

    Article  CAS  Google Scholar 

  • Finkelstein SA, Cowling SA (2011) Wetlands, temperature, and atmospheric CO2 and CH4 coupling over the past two millennia. Global Biogeochemical Cycles 25:1–7

    Article  Google Scholar 

  • Francis DR (2004) Distribution of midge remains (Diptera: Chironmidae) in surficial lake sediments in New England. Northeastern Naturalist 11:459–478

    Article  Google Scholar 

  • French CN, Moore PD (1986) Deforestation, Cannabis cultivation, and schwingmoor formation at Cors Llyn (Llyn Mire), central Wales. New Phytologist 102:469–482

    Article  Google Scholar 

  • Gates FC (1942) The bogs of northern Lower Michigan. Ecological Monographs 12:214–254

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195

    Article  Google Scholar 

  • Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecological Monographs 50:507–526

    Article  CAS  Google Scholar 

  • Herweijer C, Seager R, Cook ER (2006) North American droughts of the mid to late nineteenth century: a history, simulation and implication for Mediaeval drought. The Holocene 16:159–171

    Article  Google Scholar 

  • Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society of London - A 363:2891–2913

    Article  CAS  Google Scholar 

  • Hughes ML, McDowell PF, Marcus WA (2006) Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74:1–16

    Article  Google Scholar 

  • Hurley JP, Armstrong DE, Kenoyer GJ, Bowser CJ (1985) Groundwater as a silica source for diatom production in precipitation dominated lakes. Science 227:1576–1578

    Article  PubMed  CAS  Google Scholar 

  • Ireland AW, Booth RK (2011) Hydroclimatic variability drives episodic expansion of a floating peat mat in a North American glacial kettle. Ecology 92:11–18

    Article  PubMed  Google Scholar 

  • Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecology Letters 11:419–431

    Article  PubMed  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Article  Google Scholar 

  • Klinger LF (1996) The myth of the classic hydrosere model of bog succession. Arctic and Alpine Research 28:1–9

    Article  Google Scholar 

  • Korhola A, Ruppel M, Seppä H, Väliranta M, Virtanen T, Weckström J (2010) Importance of northern peatland expansion to the late-Holocene rise of atmospheric methane. Quaternary Science Reviews 29:611–617

    Article  Google Scholar 

  • Kratz TK (1988) A new method for estimating horizontal growth of the peat mat in basin filling peatlands. Canadian Journal of Botany 66:826–828

    Article  Google Scholar 

  • Kratz TK, DeWitt CB (1986) Internal factors controlling peatland-lake ecosystem development. Ecology 67:100–107

    Article  Google Scholar 

  • Kratz TK, Medland VL (1989) Relationship of landscape position and groundwater input in northern Wisconsin kettle-hole peatlands. In: Sharitz RR, Gibbons E (eds) Freshwater Wetlands and Wildlife DOE Symposium Series No 61. US Department of Energy Office of Scientific and Technical Information, Oak Ridge, pp 1141–1151

    Google Scholar 

  • Kratz TK, Webster KE, Bowser CJ, Magnuson JJ, Benson BJ (1997) The influence of landscape position on lakes in northern Wisconsin. Freshwater Biology 37:209–217

    Article  Google Scholar 

  • Kuhry P, Turunen J (2006) The postglacial development of boreal and subarctic peatlands. In: Weider RK, Vitt D (eds) Ecological studies 188, Boreal Peatland ecosystems. Spinger-Verlag, Berlin, pp 25–46

    Chapter  Google Scholar 

  • Lafleur PM, Hember RA, Admiral SW, Roulet NT (2005) Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrological Processes 19:3533–3550

    Article  Google Scholar 

  • Lamentowicz M, Obremska M, Mitchell EAD (2008) Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle-hole mire in Northern Poland. Review of Palaeobotany and Palynology 151:21–40

    Article  Google Scholar 

  • Lindeman RL (1941) The developmental history of Cedar Creek Bog, Minnesota. American Midland Naturalist 25:101–112

    Article  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspects of ecology. Ecology 23:399–417

    Article  Google Scholar 

  • MacDonald GM, Beilman DW, Kremenetski KV, Sheng Y, Smith LC, Velichko AA (2006) Rapid early development of the circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:385–388

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  PubMed  CAS  Google Scholar 

  • Meehl GA, Tebaldi C, Teng H, Peterson T (2007) Current and future U.S. weather extremes and El Niño. Geophysical Research Letters. doi:10.1029/2007GL031027

  • Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland ecosystems. Wiley, New York

    Google Scholar 

  • Nichols GE (1915) The vegetation of Connecticut IV. Plant societies in lowlands. The Bulletin of the Torrey Botanical Club 42:169–217

    Article  Google Scholar 

  • Nilsson M, Sagerford J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Global Change Biology 14:2317–2332

    Article  Google Scholar 

  • Parsekian AD, Jones BM, Jones M, Grosse G, Walter Anthony KM, Slater L (2011) Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA. Earth Surface Processes and Landforms 36:1889–1897

    Article  Google Scholar 

  • Patterson RT, Kumar A (2000) Assessment of Arcellacea (Thecamoebians) assemblages, species and strains as indicators in variably contaminated James Lake, northeastern Ontario. Journal of Foraminifera Research 30:310–320

    Article  Google Scholar 

  • Potzger JE (1956) Pollen profiles as indicators in the history of lake infilling and bog formation. Ecology 37:476–483

    Article  Google Scholar 

  • Rahel FJ (1984) Structuring fish assemblages along a bog lake successional gradient. Ecology 65:1276–1289

    Article  Google Scholar 

  • Rains MC (2011) Water sources and hydrodynamics of closed-basin depressions, Cook Inlet Region, Alaska. Wetlands 31:377–387

    Article  Google Scholar 

  • Ricklefs RE (2008) Economy of nature, 6th edn. W.H. Freeman, New York

    Google Scholar 

  • Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water and two bog lakes in northern Wisconsin, USA. Canadian Journal of Fishery and Aquatic Science 56:265–274

    Article  Google Scholar 

  • Rigg GB (1940) Comparisons of the development of some Sphagnum bogs of the Atlantic coast, the interior, and the Pacific coast. American Journal of Botany 27:1–14

    Article  Google Scholar 

  • Rosén P, Hammarlund D (2007) Effects of climate, fire and vegetation development on Holocene changes in total organic carbon concentration in three boreal forest lakes in northern Sweden. Biogeosciences 4:975–984

    Article  Google Scholar 

  • Roulet NT, Lafleur PM, Richard PJH, Moore TR, Humphreys ER, Bubier JL (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13:397–411

    Article  Google Scholar 

  • Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, New York

    Book  Google Scholar 

  • Scheffer M, Carpenter SR, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  PubMed  CAS  Google Scholar 

  • Schwintzer CR, Williams G (1974) Vegetation changes in a small Michigan Bog from 1917 to 1972. American Midland Naturalist 92:447–459

    Article  Google Scholar 

  • Scott KJ, Kelly CA, Rudd JWM (1999) The importance of floating peat to methane fluxes from flooded peatlands. Biogeochemistry 47:187–202

    CAS  Google Scholar 

  • Sebestyen S, Verry ES, Brooks KN (2011) Hydrological responses to changes in forest cover on uplands and peatlands. In: Kolka R, Sebestyen S, Verry ES, Brooks KN (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, New York, pp 401–432

    Chapter  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyugerov M, Romanovsky V, Oechel WC, Morrison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46:159–207

    Article  Google Scholar 

  • Shaler NS (1890) General account of the freshwater morasses of the United States. Annual Report 10, U.S. Geological Survey, Washington D.C., pp 255–339

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences, USA 102:4397–4402

    Article  CAS  Google Scholar 

  • Swan JMA, Gill AM (1970) The origins, spread, and consolidation of a floating bog in Harvard Pond, Petersham, Massachusetts. Ecology 51:829–840

    Article  Google Scholar 

  • Swinehart AL, Parker GR (2002) The potential role of lake basin morphometry in the formation and development of peatlands in Indiana. Proceedings of the Indiana Academy of Sciences 1:32–44

    Google Scholar 

  • Tallis JH (1973) The terrestrialization of lake basins in north Cheshire, with special reference to development of a ‘schwingmoor’ structure. Journal of Ecology 61:537–567

    Article  Google Scholar 

  • Tiner RW (2003) Geographically isolated wetlands of the United States. Wetlands 29:494–516

    Article  Google Scholar 

  • Transeau EN (1903) On the geographic distribution and ecological relations of the bog plant societies of northern North America. Botanical Gazette 36:401–420

    Article  Google Scholar 

  • Vad Odgaard BV (1993) Wind-determined sediment distribution and Holocene sediment yield in a small, Danish, kettle lake. Journal of Paleolimnology 8:3–13

    Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs other plants down. Trends in Ecology & Evolution 10:270–275

    Article  Google Scholar 

  • van der Valk AG (2006) The biology of freshwater wetlands. Oxford University Press, New York

    Google Scholar 

  • Vitt DH, Slack NG (1975) An analysis of the vegetation of Sphagnum-dominated kettle-hole bogs in relation to environmental gradients. Canadian Journal of Botany 53:332–359

    Article  Google Scholar 

  • Walter BP, Heimann M, Matthews E (2001) Modeling modern methane emissions from natural wetlands: 2. Interannual variations 1982–1993. Journal of Geophysical Research. doi:10.1029/2001JD900164

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wania R, Ross I, Prentice IC (2009) Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Global Biogeochemical Cycles. doi:10.1029/2008GB003413

  • Warner BG, Kubiw HJ, Hanf KI (1989) An anthropogenic cause for quaking mire formation in southwestern Ontario. Nature 340:380–384

    Article  Google Scholar 

  • Waterman WG (1926) Ecological problems from the Sphagnum bogs of Illinois. Ecology 7:255–272

    Article  Google Scholar 

  • Webster KE, Kratz TK, Bowser CJ, Magnuson JJ (1996) The influence of landscape position on lake chemical responses to drought in northern Wisconsin. Limnology and Oceanography 41:977–984

    Article  CAS  Google Scholar 

  • Wieder RK, Vitt DH (eds) (2006) Boreal peatland ecology. Springer, Berlin

    Google Scholar 

  • Wilcox DA, Simonin HA (1988) The stratigraphy and development of a floating peatland, Pinhook Bog, Indiana. Wetlands 8:75–91

    Article  Google Scholar 

  • Winkler MG (1988) Effects of Climate on the development of two Sphagnum bogs in south-central Wisconsin. Ecology 69:1032–1043

    Article  Google Scholar 

  • Yu Z (2011) Holocene carbon flux histories of the world’s peatlands: global carbon-cycle implications. The Holocene 21:761–764

    Article  Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophysical Research Letters. doi:10.1029/2010GL043584

  • Yu Z, Beilamn DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. Eos 92:97–108

    Article  Google Scholar 

  • Zhuang Q, Melillo JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process based biogeochemistry model. Global Biogeochemical Cycles. doi:10.1029/2004GB002239

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (Division of Environmental Biology) under grant numbers 1118676 and 1011224. Earlier versions of this manuscript were improved by the insightful comments of Daniel Charman, Julie Loisel, Frank Pazzaglia, Zicheng Yu, and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex W. Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ireland, A.W., Booth, R.K., Hotchkiss, S.C. et al. Drought as a Trigger for Rapid State Shifts in Kettle Ecosystems: Implications for Ecosystem Responses to Climate Change. Wetlands 32, 989–1000 (2012). https://doi.org/10.1007/s13157-012-0324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-012-0324-6

Keywords

Navigation