Skip to main content
Log in

Evaluation of cloud and precipitation parameterization using a single-column model: A TWP-ICE case study

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Cloud and precipitation parameterization schemes are evaluated, and their sensitivity to the method and/or parameters used to determine cloud physical processes is examined using a singlecolumn version of the Unified Model (SCUM). In the experiment for TWP-ICE, cloud fraction is overestimated (underestimated) in the upper (lower) troposphere due to the wet (dry) bias. The precipitation rate is well simulated during the active monsoon period, but overestimated during the suppressed monsoon and clear skies periods. In the moist convection scheme, trigger condition and entrainment process affect the lower tropospheric humidity through the impact on convective occurrence frequency and intensity, respectively. Strengthening the trigger condition and using the adaptive entrainment method alleviate the low-level dry bias. In the microphysics scheme, more large-scale precipitation is produced with prognostic rain, due to rain sedimentation considering vertical velocity of rain drop, than with diagnostic rain. Less ice/snow deposition with the prognostic two-ice category results in lower ice water content and upper-level cloud fraction than with the diagnostic splitting method for the twoice category. In the cloud macrophysics scheme, the prognostic cloud fraction and cloud/ice water content scheme produces a larger cloud fraction and more cloud/ice water content than the diagnostic scheme, mainly due to detrainment from moist convection (cloud source) that surpasses the effect of convective heating and drying (cloud sink). This affects temperature by influencing the radiative, convective, and microphysical processes. The experiment with combined modifications in cloud and precipitation schemes shows that interaction between modified moist convection and cloud macrophysics schemes results in more alleviation of the cold bias not only at the lower levels but also at the upper levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Bechtold, P., and Coauthors, 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 126, 865–888.

    Article  Google Scholar 

  • Brown, A. R., R. J. Beare, J. M. Edward, A. P. Lock, S. J. Keogh, S. F. Milton, and D. N. Walters, 2008: Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction model. Bound.- Layer Meteor., 128, 117–132.

    Article  Google Scholar 

  • Cardwell, J. R., T. W. Choularton, D. Wilson, and R. Kershaw, 2002: Use of an explicit model of the microphysics of precipitating stratiform cloud to test a bulk microphysics scheme. Quart. J. Roy. Meteor. Soc., 128, 573–592.

    Article  Google Scholar 

  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteorol., 39, 645–665.

    Article  Google Scholar 

  • Davies, L., and Coauthors, 2013: A single-column model ensemble approach applied to the TWP-ICE experiment. J. Geophys. Res., 118, 6544–6563, doi:10.1002/jgrd.50450.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.

    Article  Google Scholar 

  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56, 1925–1941.

    Article  Google Scholar 

  • Franklin, C. N., C. Jakob, M. Dix, A. Protat, and G. Roff, 2012: Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP-ICE. Quart. J. Roy. Meteor. Soc., 138, 734–754.

    Article  Google Scholar 

  • Fridlind, A. M., and Coauthors, 2012: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    Google Scholar 

  • Gregory, D. R., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stabilitydependent closure. Mon. Wea. Rev., 118, 1483–1506.

    Article  Google Scholar 

  • Jakob, C., 2003: An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Amer. Meteor. Soc., 84, 1387–1401.

    Article  Google Scholar 

  • Klocke, D., R. Pincus, and J. Quaas, 2011: On constraining estimates of climate sensitivity with present-day observations through model weighting. J. Climate, 24, 6092–6099.

    Article  Google Scholar 

  • Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129, 1148–1163.

    Article  Google Scholar 

  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187–3199.

    Article  Google Scholar 

  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629–645.

    Article  Google Scholar 

  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34, 356–358.

    Article  Google Scholar 

  • Petch, J. C., M. Willett, R. Y. Wong, and S. J. Woolnough, 2007: Modelling suppressed and active convection. Comparing a numerical weather prediction, cloud-resolving and single-column model. Quart. J. Roy. Meteor. Soc., 133, 1087–1100.

    Article  Google Scholar 

  • Petch, J. C., A. Hill, L. Davies, A. Fridlind, C. Jakob, Y. Lin, S. Xie, and P. Zhu, 2014: Evaluation of intercomparisons of four different types of model simulating TWP-ICE. Quart. J. Roy. Meteor. Soc., 140, 826–837, doi:10.1002/qj.2192.

    Article  Google Scholar 

  • Randall, D. A., K.-M. Xu, R. J. C. Somerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9, 1683–1697.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warmfrontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Article  Google Scholar 

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435–460.

    Article  Google Scholar 

  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344–355.

    Article  Google Scholar 

  • Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 1641–1657.

    Article  Google Scholar 

  • Swann, H., 2001: Evaluation of the mass-flux approach to parametrizing deep convection. Quart. J. Roy. Meteor. Soc., 127, 1239–1260.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1880.

    Article  Google Scholar 

  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040–3061.

    Article  Google Scholar 

  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919–941.

    Article  Google Scholar 

  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567–585.

    Article  Google Scholar 

  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607–1636.

    Article  Google Scholar 

  • Wilson, D. R., and D. Gregory, 2003: The behaviour of large-scale model cloud schemes under idealized forcing scenarios. Quart. J. Roy. Meteor. Soc., 129, 967–986.

    Article  Google Scholar 

  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 2093–2107.

    Article  Google Scholar 

  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and A. Bodas-Salcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Quart. J. Roy. Meteor. Soc., 134, 2109–2125.

    Article  Google Scholar 

  • Xie, S., T. Hume, C. Jakob, S. A. Klein, R. B. McCoy, and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 57–79.

    Article  Google Scholar 

  • Yang, B., and Coauthors, 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res. Atmos., 118, 395–415, doi:10.1029/2012JD018213.

    Article  Google Scholar 

  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 1503–1524.

    Article  Google Scholar 

  • Zhao, C., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Young Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Han, JY., Choi, IJ. et al. Evaluation of cloud and precipitation parameterization using a single-column model: A TWP-ICE case study. Asia-Pacific J Atmos Sci 50, 469–480 (2014). https://doi.org/10.1007/s13143-014-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-014-0037-2

Key words

Navigation