Skip to main content

Advertisement

Log in

Spatial-spectral operator theoretic methods for hyperspectral image classification

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

With the emergence of new remote sensing modalities, it becomes increasingly important to find novel algorithms for fusion and integration of different types of data for the purpose of improving performance of applications, such as target/anomaly detection or classification. Many popular techniques that deal with this problem are based on performing multiple classifications and fusing these individual results into one product. In this paper we provide a new approach, focused on creating joint representations of the multi-modal data, which then can be subject to analysis by state of the art classifiers. In the work presented in this paper we consider the problem of spatial-spectral fusion for hyperspectral imagery. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and the resulting data-dependent fusion operators and their representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 1396, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  • Belkin, M., Niyogi, P.: Convergence of Laplacian eigenmaps. Statistics 19, 1–31 (2008)

    MATH  Google Scholar 

  • Benedetto, J.J., Czaja, W., Dobrosotskaya, J., Doster, T., Duke, K., Gillis, D.: Integration of heterogeneous data for classification in hyperspectral satellite imagery. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, Proc. SPIE, vol. 839078, pp. 1–12. International Society for Optics and Photonics (2012)

  • Benedetto, J.J., Czaja, W., Dobrosotskaya, J., Doster, T., Duke, K., Gillis, D.: Semi-supervised learning of heterogeneous data in remote sensing imagery. In: Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering X, Proc. SPIE, vol. 840104, pp. 1–12. International Society for Optics and Photonics (2012)

  • Benedetto, J.J., Czaja, W., Ehler, M.: Wavelet packets for time frequency analysis of multispectral data. Int. J. Geomath. 4(2), 137–154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Benedetto, J.J., Czaja, W., Ehler, M., Flake, C., Hirn, M.: Wavelet packets for multi- and hyper-spectral imagery. Proc. SPIE 753508, 1–11 (2010)

    Google Scholar 

  • Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., Benediktsson, J.: Spectral-spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach. IEEE Trans. Image Process. 21(4), 2008–2021 (2012)

    Article  MathSciNet  Google Scholar 

  • Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  • Bruzzone, L., Carlin, L.: A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44(9), 2587–2600 (2006)

    Article  Google Scholar 

  • Cahill, N.D., Chew, S.E., Wenger, P.S.: Spatial-spectral dimensionality reduction of hyperspectral imagery with partial knowledge of class labels. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Proc. SPIE. International Society for Optics and Photonics (2015)

  • Cahill, N.D., Messinger, D.W., Czaja, W.: Schroedinger eigenmaps with nondiagonal potentials for spatial-spectral clustering of hyperspectral imagery. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Proc. SPIE, pp. 1–13. International Society for Optics and Photonics (2014)

  • Camps-Valls, G., Bandos Marsheva, T.V., Zhou, D.: Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 45(10), 3044–3054 (2007)

    Article  Google Scholar 

  • Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Rojo-Álvarez, J.L., Martínez-Ramón, M.: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 46(6), 1822–1835 (2008)

    Article  Google Scholar 

  • Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sensing Lett. 3(1), 93–97 (2006)

    Article  Google Scholar 

  • Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (2001). Accessed June 2013

  • Cloninger, A., Czaja, W., Doster, T.: Operator analysis and diffusion based embeddings for heterogeneous data fusion. In: 3rd Place 2013 IEEE GRSS Data Fusion Contest: Fusion of Hyperspectral and LiDAR Data (2013)

  • Coifman, R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102(21), 7426–7431 (2005)

    Article  Google Scholar 

  • Coifman, R.R., Hirn, M.J.: Diffusion maps for changing data. Appl. Comput. Harmonic Anal. 36(1), 79–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  • Czaja, W., Ehler, M.: Schröedinger eigenmaps for the analysis of bio-medical data. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1274–1280 (2013)

    Article  Google Scholar 

  • Donoho, D., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Doster, T.: Harmonic analysis inspired data fusion for applications in remote sensing. Ph.D. thesis, University of Maryland, College Park (2014)

  • Duke, K.: A study of the relationship between spectrum and geometry through fourier frames and Laplacian eigenmaps. Ph.D. thesis, University of Maryland, College Park (2012)

  • Fauvel, M., Benediktsson, J., Chanussot, J., Sveinsson, J.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  • Fauvel, M., Chanussot, J., Benediktsson, J.: Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP J. Adv. Signal Process 2009, 1–14 (2009)

  • Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J., Tilton, J.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  • Gillis, D., Bowles, J.: Hyperspectral image segmentation using spatial-spectral graphs. In: SPIE Defense, Security, and Sensing, vol. 83901Q, pp. 1–11. International Society for Optics and Photonics (2012)

  • Goldberg, Y., Zakai, A., Kushnir, D., Ritov, Y.: Manifold learning: the price of normalization. J. Mach. Learn. Res. 9, 1909–1939 (2008)

    MathSciNet  MATH  Google Scholar 

  • Halevy, A.: Extensions of Laplacian eigenmaps for manifold learning. Ph.D Thesis, University of Maryland, College Park (2011)

  • Hou, B., Zhang, X., Ye, Q., Zheng, Y.: A novel method for hyperspectral image classification based on Laplacian eigenmap pixels distribution-flow. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(3), 1602–1618 (2013)

    Article  Google Scholar 

  • Hu, Y., Saber, E., Monteiro, S.T., Cahill, N.D., Messinger, D.W.: Classification of hyperspectral images based on conditional random fields. In: Image Processing: Machine Vision Applications VIII, Proc. SPIE. International Society for Optics and Photonics (2015)

  • Kim, D., Finkel, L.: Hyperspectral image processing using locally linear embedding. In: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, pp. 316–319 (2003)

  • Lee, M., Bruce, L., Prasad, S.: Concurrent spatial-spectral band grouping: Providing a spatial context for spectral dimensionality reduction. In: 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4 (2011)

  • Ma, L., Crawford, M., Tian, J.: Generalised supervised local tangent space alignment for hyperspectral image classification. Electron. Lett. 46(7), 497–498 (2010)

    Article  Google Scholar 

  • Manolakis, D., Marden, D., Shaw, G.: Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14(1), 79–116 (2003)

    Google Scholar 

  • Mohan, A., Sapiro, G., Bosch, E.: Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 4, 206–210 (2007)

    Article  Google Scholar 

  • Plaza, A., Martinez, P., Pérez, R., Plaza, J.: Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Trans. Geosci. Remote Sens. 40(9), 2025–2041 (2002)

    Article  Google Scholar 

  • Prasad, S., Bruce, L.: Limitations of principal components analysis for hyperspectral target recognition. IEEE Geosci. Remote Sens. Lett. 5, 625–629 (2008)

    Article  Google Scholar 

  • Rajapakse, V., Czaja, W., Pommier, Y., Reinhold, W., Varma, S.: Predicting expression-related features of chromosomal domain organization with network-structured analysis of gene expression and chromosomal location. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, pp. 226–233 (2012)

  • Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  • Schaum, A., Stocker, A.: Hyperspectral change detection and supervised matched filtering based on covariance equalization. In: Proceedings of SPIE, vol. 5425, pp. 77–90 (2004)

  • Schott, J.: Remote Sensing: The Image Chain Approach. Oxford University Press, New York (1997)

    Google Scholar 

  • Smith, M., Johnson, P., Adams, J.: Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. In: Lunar and Planetary ScienceConference Proceedings, vol. 15, pp. 797–804 (1985)

  • Tarabalka, Y., Benediktsson, J., Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47, 2973–2987 (2009)

    Article  Google Scholar 

  • Tarabalka, Y., Benediktsson, J., Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973–2987 (2009)

    Article  Google Scholar 

  • Tarabalka, Y., Tilton, J., Benediktsson, J., Chanussot, J.: A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(1), 262–272 (2012)

    Article  Google Scholar 

  • Thenkabail, P., Smith, R., De Pauw, E.: Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 71(2), 158–182 (2000)

    Article  Google Scholar 

  • Tilton, J., Tarabalka, Y., Montesano, P., Gofman, E.: Best merge region growing with integrated region object classification. IEEE Trans. Geosci. Remote Sens. 50, 4454–4467 (2012)

    Article  Google Scholar 

  • Torgerson, W.S.: Multidimensional scaling: I. theory and method. Psychometrika 17(4), 401–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Van Der Meer, F.: Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinform. 5(1), 55–68 (2004)

    Article  Google Scholar 

  • Zhang, X., Chew, S.E., Xu, Z., Cahill, N.D.: Slic superpixels for efficient graph-based dimensionality reduction of hyperspectral imagery. In: IAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Proc. SPIE. International Society for Optics and Photonics (2015)

  • Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Sci. Comput. 26, 313–338 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Landgrebe (Purdue University, USA) for providing the Indian Pines data and Professor Paolo Gamba (Pavia University, Italy) for providing the Pavia University and Pavia Centre data. The work presented in this paper was supported in part by NSF through grant CBET 0854223, by DTRA through Grant HDTRA 1-13-1-0015, and by ARO through Grant W911NF1610008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Czaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetto, J.J., Czaja, W., Dobrosotskaya, J. et al. Spatial-spectral operator theoretic methods for hyperspectral image classification. Int J Geomath 7, 275–297 (2016). https://doi.org/10.1007/s13137-016-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-016-0085-0

Keywords

Mathematics Subject Classification

Navigation